ﻻ يوجد ملخص باللغة العربية
We employ gravitational-wave radiometry to map the gravitational waves stochastic background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from Advanced LIGOs first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20 - 1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range $F_{alpha,Theta}(f) < (0.1 - 56) times 10^{-8}$ erg cm$^{-2}$ s$^{-1}$ Hz$^{-1}$ (f/25 Hz)$^{alpha-1}$ depending on the sky location $Theta$ and the spectral power index $alpha$. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of $Omega(f,Theta) < (0.39-7.6) times 10^{-8}$ sr$^{-1}$ (f/25 Hz)$^alpha$ depending on $Theta$ and $alpha$. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of $h_0 <$ (6.7, 5.5, and 7.0) $times 10^{-25}$ respectively, at the most sensitive detector frequencies between 130 - 175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.
A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be gr
We perform an unmodeled search for persistent, directional gravitational wave (GW) sources using data from the first and second observing runs of Advanced LIGO. We do not find evidence for any GW signals. We place limits on the broadband GW flux emit
We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGOs and Advanced Virgos third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing ru
Persistent gravitational waves from rapidly rotating neutron stars, such as those found in some young supernova remnants, may fall in the sensitivity band of the advanced Laser Interferometer Gravitational-wave Observatory (aLIGO). Searches for these
We present a search for gravitational waves from double neutron star binaries inspirals in Advanced LIGOs first observing run. The search considers a narrow range of binary chirp masses motivated by the population of known double neutron star binarie