ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for the isotropic stochastic background using data from Advanced LIGOs second observing run

94   0   0.0 ( 0 )
 نشر من قبل LSC P&P Committee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The stochastic gravitational-wave background is a superposition of sources that are either too weak or too numerous to detect individually. In this study we present the results from a cross-correlation analysis on data from Advanced LIGOs second observing run (O2), which we combine with the results of the first observing run (O1). We do not find evidence for a stochastic background, so we place upper limits on the normalized energy density in gravitational waves at the 95% credible level of $Omega_{rm GW}<6.0times 10^{-8}$ for a frequency-independent (flat) background and $Omega_{rm GW}<4.8times 10^{-8}$ at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1 result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic background of scalar- and vector-polarized gravitational waves, and we discuss the implication of these results for models of compact binaries and cosmic string backgrounds. Finally, we present a conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston observatories. We find that correlated noise is well below the O2 sensitivity.



قيم البحث

اقرأ أيضاً

We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGOs and Advanced Virgos third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing ru ns in the advanced detector era, we include Virgo in the search for the GWB. The results are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density $Omega_{rm GW}leq 5.8times 10^{-9}$ at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20-76.6 Hz; $leq 3.4 times 10^{-9}$ at 25 Hz for a power-law GWB with a spectral index of 2/3 (consistent with expectations for compact binary coalescences), in the band 20-90.6 Hz; and $leq 3.9 times 10^{-10}$ at 25 Hz for a spectral index of 3, in the band 20-291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB. We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories of gravity; we place upper limits on the strength of GWBs with these polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a Bayesian analysis that allows for the presence of both a GWB and an effective magnetic background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model for the GWB from the merger of compact binaries. Finally, we combine our results with observations of individual mergers andshow that, at design sensitivity, this joint approach may yield stronger constraints on the merger rate of binary black holes at $z lesssim 2$ than can be achieved with individually resolved mergers alone. [abridged]
A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be gr eater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced LIGOs first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be $Omega_0<1.7times 10^{-7}$ with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ~33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
Primordial density perturbations in the radiation-dominated era of the early Universe are expected to generate stochastic gravitational waves (GWs) due to nonlinear mode coupling. In this emph{Letter}, we report on a search for such a stochastic GW b ackground in the data of the two LIGO detectors during their second observing run (O2). We focus on the primordial perturbations in the range of comoving wavenumbers $10^{16}-10^{18}~{rm Mpc}^{-1}$ for which the stochastic background falls within the detectors sensitivity band. We do not find any conclusive evidence of this stochastic signal in the data, and thus place the very first GW-based constraints on the amplitude of the power spectrum at these scales. We assume a lognormal shape for the power spectrum and Gaussian statistics for the primordial perturbations, and vary the width of the power spectrum to cover both narrow and broad spectra. Derived upper limits ($95%$) on the amplitude of the power spectrum are $0.01-0.1$. As a byproduct, we are able to infer upper limits on the fraction of the Universes mass in ultralight primordial black holes ($M_mathrm{PBH} simeq 10^{-20}-10^{-19}M_{odot}$) at their formation time to be $lesssim 10^{-25}$.
Persistent gravitational waves from rapidly rotating neutron stars, such as those found in some young supernova remnants, may fall in the sensitivity band of the advanced Laser Interferometer Gravitational-wave Observatory (aLIGO). Searches for these signals are computationally challenging, as the frequency and frequency derivative are unknown and evolve rapidly due to the youth of the source. A hidden Markov model (HMM), combined with a maximum-likelihood matched filter, tracks rapid frequency evolution semi-coherently in a computationally efficient manner. We present the results of an HMM search targeting 12 young supernova remnants in data from Advanced LIGOs second observing run. Six targets produce candidates that are above the search threshold and survive pre-defined data quality vetoes. However, follow-up analyses of these candidates show that they are all consistent with instrumental noise artefacts.
We present a search for gravitational waves from double neutron star binaries inspirals in Advanced LIGOs first observing run. The search considers a narrow range of binary chirp masses motivated by the population of known double neutron star binarie s in the nearby universe. This search differs from previously published results by providing the most sensitive published survey of neutron stars in Advanced LIGOs first observing run within this narrow mass range and including times when only one of the two LIGO detectors was in operation in the analysis. The search was sensitive to binary neutron star inspirals to an average distance of ~85 Mpc over 93.2 days. We do not identify any unambiguous gravitational wave signals in our sample of 103 sub-threshold candidates with false-alarm-rates of less than one per day. However, given the expected binary neutron star merger rate of R = 100 - 4000 Gpc^(-3) yr^(-1), we expect O(1) gravitational wave events within our candidate list. This suggests the possibility that one or more of these candidates is in fact a binary neutron star merger. Although the contamination fraction in our candidate list is ~99%, it might be possible to correlate these events with other messengers to identify a potential multi-messenger signal. We provide an online candidate list with the times and sky locations for all events in order to enable multi-messenger searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا