ﻻ يوجد ملخص باللغة العربية
We introduce a set of Bell inequalities for a three-qubit system. Each inequality within this set is violated by all generalized GHZ states. More entangled a generalized GHZ state is, more will be the violation. This establishes a relation between nonlocality and entanglement for this class of states. Certain inequalities within this set are violated by pure biseparable states. We also provide numerical evidence that at least one of these Bell inequalities is violated by a pure genuinely entangled state. These Bell inequalities can distinguish between separable, biseparable and genuinely entangled pure three-qubit states. We also generalize this set to n-qubit systems and may be suitable to characterize the entanglement of n-qubit pure states.
Non-trivial facet inequalities play important role in detecting and quantifying the nonolocality of a state -- specially a pure state. Such inequalities are expected to be tight. Number of such inequalities depends on the Bell test scenario. With the
A systematic approach is presented to construct non-homogeneous two- and three-qubit Bell-type inequalities. When projector-like terms are subtracted from homogeneous two-qubit CHSH polynomial, non-homogeneous inequalities are attained and the maxima
For any finite number of parts, measurements and outcomes in a Bell scenario we estimate the probability of random $N$-qu$d$it pure states to substantially violate any Bell inequality with uniformly bounded coefficients. We prove that under some cond
Bell inequalities constitute a key tool in quantum information theory: they not only allow one to reveal nonlocality in composite quantum systems, but, more importantly, they can be used to certify relevant properties thereof. We provide a very simpl
The states of three-qubit systems split into two inequivalent types of genuine tripartite entanglement, namely the Greenberger-Horne-Zeilinger (GHZ) type and the $W$ type. A state belonging to one of these classes can be stochastically transformed on