ﻻ يوجد ملخص باللغة العربية
Bell inequalities constitute a key tool in quantum information theory: they not only allow one to reveal nonlocality in composite quantum systems, but, more importantly, they can be used to certify relevant properties thereof. We provide a very simple and intuitive construction of Bell inequalities that are maximally violated by the multiqubit graph states and can be used for their robust self-testing. The main advantage of our inequalities over previous constructions for these states lies in the fact that the number of correlations they contain scales only linearly with the number of observers, which presents a significant reduction of the experimental effort needed to violate them. We also discuss possible generalizations of our approach by showing that it is applicable to entangled states whose stabilizers are not simply tensor products of Pauli matrices.
It is well-known that observing nonlocal correlations allows us to draw conclusions about the quantum systems under consideration. In some cases this yields a characterisation which is essentially complete, a phenomenon known as self-testing. Self-te
We introduce a set of Bell inequalities for a three-qubit system. Each inequality within this set is violated by all generalized GHZ states. More entangled a generalized GHZ state is, more will be the violation. This establishes a relation between no
Non-trivial facet inequalities play important role in detecting and quantifying the nonolocality of a state -- specially a pure state. Such inequalities are expected to be tight. Number of such inequalities depends on the Bell test scenario. With the
We investigate the Bell inequalities derived from the graph states with violations detectable even with the presence of noises, which generalizes the idea of error-correcting Bell inequalities [Phys. Rev. Lett. 101, 080501 (2008)]. Firstly we constru
A systematic approach is presented to construct non-homogeneous two- and three-qubit Bell-type inequalities. When projector-like terms are subtracted from homogeneous two-qubit CHSH polynomial, non-homogeneous inequalities are attained and the maxima