ﻻ يوجد ملخص باللغة العربية
The states of three-qubit systems split into two inequivalent types of genuine tripartite entanglement, namely the Greenberger-Horne-Zeilinger (GHZ) type and the $W$ type. A state belonging to one of these classes can be stochastically transformed only into a state within the same class by local operations and classical communications. We provide local quantum operations, consisting of the most general two-outcome measurement operators, for the deterministic transformations of three-qubit pure states in which the initial and the target states are in the same class. We explore these transformations, originally having standard GHZ and standard $W$ states, under the local measurement operations carried out by a single party and $p$ ($p=2,3$) parties (successively). We find a notable result that the standard GHZ state cannot be deterministically transformed to a GHZ-type state in which all its bipartite entanglements are nonzero, i.e., a transformation can be achieved with unit probability when the target state has at least one vanishing bipartite concurrence.
We propose an explicit protocol for the deterministic transformations of bipartite pure states in any dimension using deterministic transformations in lower dimensions. As an example, explicit solutions for the deterministic transformations of $3otim
Quantum entanglement of pure states is usually quantified via the entanglement entropy, the von Neumann entropy of the reduced state. Entanglement entropy is closely related to entanglement distillation, a process for converting quantum states into s
It is well known that the majorization condition is the necessary and sufficient condition for the deterministic transformations of both pure bipartite entangled states by local operations and coherent states under incoherent operations. In this pape
In this paper, we investigate a characterization of Quantum Mechanics by two physical principles based on general probabilistic theories. We first give the operationally motivated definition of the physical equivalence of states and consider the prin
We introduce a set of Bell inequalities for a three-qubit system. Each inequality within this set is violated by all generalized GHZ states. More entangled a generalized GHZ state is, more will be the violation. This establishes a relation between no