ترغب بنشر مسار تعليمي؟ اضغط هنا

Clickstream analysis for crowd-based object segmentation with confidence

114   0   0.0 ( 0 )
 نشر من قبل Eric Heim
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the rapidly increasing interest in machine learning based solutions for automatic image annotation, the availability of reference annotations for algorithm training is one of the major bottlenecks in the field. Crowdsourcing has evolved as a valuable option for low-cost and large-scale data annotation; however, quality control remains a major issue which needs to be addressed. To our knowledge, we are the first to analyze the annotation process to improve crowd-sourced image segmentation. Our method involves training a regressor to estimate the quality of a segmentation from the annotators clickstream data. The quality estimation can be used to identify spam and weight individual annotations by their (estimated) quality when merging multiple segmentations of one image. Using a total of 29,000 crowd annotations performed on publicly available data of different object classes, we show that (1) our method is highly accurate in estimating the segmentation quality based on clickstream data, (2) outperforms state-of-the-art methods for merging multiple annotations. As the regressor does not need to be trained on the object class that it is applied to it can be regarded as a low-cost option for quality control and confidence analysis in the context of crowd-based image annotation.



قيم البحث

اقرأ أيضاً

82 - Gongyang Li , Zhi Liu , Ran Shi 2021
As a natural way for human-computer interaction, fixation provides a promising solution for interactive image segmentation. In this paper, we focus on Personal Fixations-based Object Segmentation (PFOS) to address issues in previous studies, such as the lack of appropriate dataset and the ambiguity in fixations-based interaction. In particular, we first construct a new PFOS dataset by carefully collecting pixel-level binary annotation data over an existing fixation prediction dataset, such dataset is expected to greatly facilitate the study along the line. Then, considering characteristics of personal fixations, we propose a novel network based on Object Localization and Boundary Preservation (OLBP) to segment the gazed objects. Specifically, the OLBP network utilizes an Object Localization Module (OLM) to analyze personal fixations and locates the gazed objects based on the interpretation. Then, a Boundary Preservation Module (BPM) is designed to introduce additional boundary information to guard the completeness of the gazed objects. Moreover, OLBP is organized in the mixed bottom-up and top-down manner with multiple types of deep supervision. Extensive experiments on the constructed PFOS dataset show the superiority of the proposed OLBP network over 17 state-of-the-art methods, and demonstrate the effectiveness of the proposed OLM and BPM components. The constructed PFOS dataset and the proposed OLBP network are available at https://github.com/MathLee/OLBPNet4PFOS.
Confidence-aware learning is proven as an effective solution to prevent networks becoming overconfident. We present a confidence-aware camouflaged object detection framework using dynamic supervision to produce both accurate camouflage map and meanin gful confidence representing model awareness about the current prediction. A camouflaged object detection network is designed to produce our camouflage prediction. Then, we concatenate it with the input image and feed it to the confidence estimation network to produce an one channel confidence map.We generate dynamic supervision for the confidence estimation network, representing the agreement of camouflage prediction with the ground truth camouflage map. With the produced confidence map, we introduce confidence-aware learning with the confidence map as guidance to pay more attention to the hard/low-confidence pixels in the loss function. We claim that, once trained, our confidence estimation network can evaluate pixel-wise accuracy of the prediction without relying on the ground truth camouflage map. Extensive results on four camouflaged object detection testing datasets illustrate the superior performance of the proposed model in explaining the camouflage prediction.
79 - Chen Liang , Yu Wu , Yawei Luo 2021
Text-based video segmentation is a challenging task that segments out the natural language referred objects in videos. It essentially requires semantic comprehension and fine-grained video understanding. Existing methods introduce language representa tion into segmentation models in a bottom-up manner, which merely conducts vision-language interaction within local receptive fields of ConvNets. We argue that such interaction is not fulfilled since the model can barely construct region-level relationships given partial observations, which is contrary to the description logic of natural language/referring expressions. In fact, people usually describe a target object using relations with other objects, which may not be easily understood without seeing the whole video. To address the issue, we introduce a novel top-down approach by imitating how we human segment an object with the language guidance. We first figure out all candidate objects in videos and then choose the refereed one by parsing relations among those high-level objects. Three kinds of object-level relations are investigated for precise relationship understanding, i.e., positional relation, text-guided semantic relation, and temporal relation. Extensive experiments on A2D Sentences and J-HMDB Sentences show our method outperforms state-of-the-art methods by a large margin. Qualitative results also show our results are more explainable. Besides, based on the inspiration, we win the first place in CVPR2021 Referring Youtube-VOS challenge.
Modern CNN-based object detectors rely on bounding box regression and non-maximum suppression to localize objects. While the probabilities for class labels naturally reflect classification confidence, localization confidence is absent. This makes pro perly localized bounding boxes degenerate during iterative regression or even suppressed during NMS. In the paper we propose IoU-Net learning to predict the IoU between each detected bounding box and the matched ground-truth. The network acquires this confidence of localization, which improves the NMS procedure by preserving accurately localized bounding boxes. Furthermore, an optimization-based bounding box refinement method is proposed, where the predicted IoU is formulated as the objective. Extensive experiments on the MS-COCO dataset show the effectiveness of IoU-Net, as well as its compatibility with and adaptivity to several state-of-the-art object detectors.
This paper investigates how to realize better and more efficient embedding learning to tackle the semi-supervised video object segmentation under challenging multi-object scenarios. The state-of-the-art methods learn to decode features with a single positive object and thus have to match and segment each target separately under multi-object scenarios, consuming multiple times computing resources. To solve the problem, we propose an Associating Objects with Transformers (AOT) approach to match and decode multiple objects uniformly. In detail, AOT employs an identification mechanism to associate multiple targets into the same high-dimensional embedding space. Thus, we can simultaneously process the matching and segmentation decoding of multiple objects as efficiently as processing a single object. For sufficiently modeling multi-object association, a Long Short-Term Transformer is designed for constructing hierarchical matching and propagation. We conduct extensive experiments on both multi-object and single-object benchmarks to examine AOT variant networks with different complexities. Particularly, our AOT-L outperforms all the state-of-the-art competitors on three popular benchmarks, i.e., YouTube-VOS (83.7% J&F), DAVIS 2017 (83.0%), and DAVIS 2016 (91.0%), while keeping more than 3X faster multi-object run-time. Meanwhile, our AOT-T can maintain real-time multi-object speed on the above benchmarks. We ranked 1st in the 3rd Large-scale Video Object Segmentation Challenge. The code will be publicly available at https://github.com/z-x-yang/AOT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا