ترغب بنشر مسار تعليمي؟ اضغط هنا

ClawCraneNet: Leveraging Object-level Relation for Text-based Video Segmentation

80   0   0.0 ( 0 )
 نشر من قبل Chen Liang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Text-based video segmentation is a challenging task that segments out the natural language referred objects in videos. It essentially requires semantic comprehension and fine-grained video understanding. Existing methods introduce language representation into segmentation models in a bottom-up manner, which merely conducts vision-language interaction within local receptive fields of ConvNets. We argue that such interaction is not fulfilled since the model can barely construct region-level relationships given partial observations, which is contrary to the description logic of natural language/referring expressions. In fact, people usually describe a target object using relations with other objects, which may not be easily understood without seeing the whole video. To address the issue, we introduce a novel top-down approach by imitating how we human segment an object with the language guidance. We first figure out all candidate objects in videos and then choose the refereed one by parsing relations among those high-level objects. Three kinds of object-level relations are investigated for precise relationship understanding, i.e., positional relation, text-guided semantic relation, and temporal relation. Extensive experiments on A2D Sentences and J-HMDB Sentences show our method outperforms state-of-the-art methods by a large margin. Qualitative results also show our results are more explainable. Besides, based on the inspiration, we win the first place in CVPR2021 Referring Youtube-VOS challenge.



قيم البحث

اقرأ أيضاً

112 - Heguang Liu , Jingle Jiang 2019
Multi-instance video object segmentation is to segment specific instances throughout a video sequence in pixel level, given only an annotated first frame. In this paper, we implement an effective fully convolutional networks with U-Net similar struct ure built on top of OSVOS fine-tuned layer. We use instance isolation to transform this multi-instance segmentation problem into binary labeling problem, and use weighted cross entropy loss and dice coefficient loss as our loss function. Our best model achieves F mean of 0.467 and J mean of 0.424 on DAVIS dataset, which is a comparable performance with the State-of-the-Art approach. But case analysis shows this model can achieve a smoother contour and better instance coverage, meaning it better for recall focused segmentation scenario. We also did experiments on other convolutional neural networks, including Seg-Net, Mask R-CNN, and provide insightful comparison and discussion.
85 - Kai Xu , Longyin Wen , Guorong Li 2019
In this paper, we present a unified, end-to-end trainable spatiotemporal CNN model for VOS, which consists of two branches, i.e., the temporal coherence branch and the spatial segmentation branch. Specifically, the temporal coherence branch pretraine d in an adversarial fashion from unlabeled video data, is designed to capture the dynamic appearance and motion cues of video sequences to guide object segmentation. The spatial segmentation branch focuses on segmenting objects accurately based on the learned appearance and motion cues. To obtain accurate segmentation results, we design a coarse-to-fine process to sequentially apply a designed attention module on multi-scale feature maps, and concatenate them to produce the final prediction. In this way, the spatial segmentation branch is enforced to gradually concentrate on object regions. These two branches are jointly fine-tuned on video segmentation sequences in an end-to-end manner. Several experiments are carried out on three challenging datasets (i.e., DAVIS-2016, DAVIS-2017 and Youtube-Object) to show that our method achieves favorable performance against the state-of-the-arts. Code is available at https://github.com/longyin880815/STCNN.
128 - Kai Xu , Angela Yao 2021
We propose an efficient inference framework for semi-supervised video object segmentation by exploiting the temporal redundancy of the video. Our method performs inference on selected keyframes and makes predictions for other frames via propagation b ased on motion vectors and residuals from the compressed video bitstream. Specifically, we propose a new motion vector-based warping method for propagating segmentation masks from keyframes to other frames in a multi-reference manner. Additionally, we propose a residual-based refinement module that can correct and add detail to the block-wise propagated segmentation masks. Our approach is flexible and can be added on top of existing video object segmentation algorithms. With STM with top-k filtering as our base model, we achieved highly competitive results on DAVIS16 and YouTube-VOS with substantial speedups of up to 4.9X with little loss in accuracy.
It has been well recognized that modeling object-to-object relations would be helpful for object detection. Nevertheless, the problem is not trivial especially when exploring the interactions between objects to boost video object detectors. The diffi culty originates from the aspect that reliable object relations in a video should depend on not only the objects in the present frame but also all the supportive objects extracted over a long range span of the video. In this paper, we introduce a new design to capture the interactions across the objects in spatio-temporal context. Specifically, we present Relation Distillation Networks (RDN) --- a new architecture that novelly aggregates and propagates object relation to augment object features for detection. Technically, object proposals are first generated via Region Proposal Networks (RPN). RDN then, on one hand, models object relation via multi-stage reasoning, and on the other, progressively distills relation through refining supportive object proposals with high objectness scores in a cascaded manner. The learnt relation verifies the efficacy on both improving object detection in each frame and box linking across frames. Extensive experiments are conducted on ImageNet VID dataset, and superior results are reported when comparing to state-of-the-art methods. More remarkably, our RDN achieves 81.8% and 83.2% mAP with ResNet-101 and ResNeXt-101, respectively. When further equipped with linking and rescoring, we obtain to-date the best reported mAP of 83.8% and 84.7%.
Video object segmentation, aiming to segment the foreground objects given the annotation of the first frame, has been attracting increasing attentions. Many state-of-the-art approaches have achieved great performance by relying on online model updati ng or mask-propagation techniques. However, most online models require high computational cost due to model fine-tuning during inference. Most mask-propagation based models are faster but with relatively low performance due to failure to adapt to object appearance variation. In this paper, we are aiming to design a new model to make a good balance between speed and performance. We propose a model, called NPMCA-net, which directly localizes foreground objects based on mask-propagation and non-local technique by matching pixels in reference and target frames. Since we bring in information of both first and previous frames, our network is robust to large object appearance variation, and can better adapt to occlusions. Extensive experiments show that our approach can achieve a new state-of-the-art performance with a fast speed at the same time (86.5% IoU on DAVIS-2016 and 72.2% IoU on DAVIS-2017, with speed of 0.11s per frame) under the same level comparison. Source code is available at https://github.com/siyueyu/NPMCA-net.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا