ترغب بنشر مسار تعليمي؟ اضغط هنا

Equivalence of Jordan and Einstein frames at the quantum level

133   0   0.0 ( 0 )
 نشر من قبل Narayan Banerjee
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that the Jordan frame and its conformally transformed version, the Einstein frame of nonminimally coupled theories of gravity, are actually equivalent at the quantum level. The example of the theory taken up is the Brans-Dicke theory, and the wave packet calculations are done for a homogeneous and isotropic cosmological model in the purest form of the theory, i.e., in the absence of any additional matter sector. The calculations are clean and exact, and the result obtained are unambiguous.



قيم البحث

اقرأ أيضاً

In this note we consider the issue of the classical equivalence of scale-invariant gravity in the Einstein and in the Jordan frames. We first consider the simplest example $f(R)=R^{2}$ and show explicitly that the equivalence breaks down when dealing with Ricci-flat solutions. We discuss the link with the fact that flat solutions in quadratic gravity have zero energy. We also consider the case of scale-invariant tensor-scalar gravity and general $f(R)$ theories. We argue that all scale-invariant gravity models have Ricci flat solutions in the Jordan frame that cannot be mapped into the Einstein frame. In particular, the Minkowski metric exists only in the Jordan frame. In this sense, the two frames are not equivalent.
Vacuum Brans-Dicke theory can be self-consistently described in two frames, the Jordan frame (JF) and the conformally rescaled Einstein frame (EF), the transformations providing an easy passage from one frame to the other at the level of actions and solutions. Despite this, the conformal frames are inequivalent describing different geometries. It is shown that the predictions of the weak field lensing (WFL) observables in the EF are different from those recently obtained in the JF for the vacuum Brans-Dicke class 1 solution. The value of the Brans-Dicke coupling parameter $omega$ from the Cassini spacecraft experiment reveals the degree of accuracy needed to experimentally distinguish the WFL measurements including the total magnification factor in the two frames.
124 - Bozhidar Z. Iliev 1996
A treatment in a neighborhood and at a point of the equivalence principle on the basis of derivations of the tensor algebra over a manifold is given. Necessary and sufficient conditions are given for the existence of local bases, called normal frames , in which the components of derivations vanish in a neighborhood or at a point. These frames (bases), if any, are explicitly described and the problem of their holonomicity is considered. In particular, the obtained results concern symmetric as well as nonsymmetric linear connections.
General Relativity is today the best theory of gravity addressing a wide range of phenomena. Our understanding of physical laws, from cosmology to local scales, cannot be properly formulated without taking into account it. It is based on one of the m ost fundamental principles of Nature, the Equivalence Principle, which represents the core of the Einstein theory of gravity. The confirmation of its validity at different scales and in different contexts represents one of the main challenges of modern physics both from the theoretical and the experimental points of view. A major issue related to this principle is the fact that we actually do not know if it is valid at quantum level. Furthermore, recent progress on relativistic theories of gravity have to take into account new issues like Dark Matter and Dark Energy, as well as the validity of fundamental principles like local Lorentz and position invariance. Experiments allow to set stringent constraints on well established symmetry laws, on the physics beyond the Standard Model of particles and interactions, and on General Relativity and its possible extensions. In this review, we discuss precision tests of gravity in General Relativity and alternative theories and their relation with the Equivalence Principle. In the first part, we discuss the Einstein Equivalence Principle according to its weak and strong formulation. We recall some basic topics of General Relativity and the necessity of its extension. Some models of modified gravity are presented in some details. The second part of the paper is devoted to the experimental tests of the Equivalence Principle in its weak formulation. We present the results and methods used in high-precision experiments, and discuss the potential and prospects for future experimental tests.
We present in detail the scientific objectives in fundamental physics of the Space-Time Explorer and QUantum Equivalence Space Test (STE-QUEST) space mission. STE-QUEST was pre-selected by the European Space Agency together with four other missions f or the cosmic vision M3 launch opportunity planned around 2024. It carries out tests of different aspects of the Einstein Equivalence Principle using atomic clocks, matter wave interferometry and long distance time/frequency links, providing fascinating science at the interface between quantum mechanics and gravitation that cannot be achieved, at that level of precision, in ground experiments. We especially emphasize the specific strong interest of performing equivalence principle tests in the quantum regime, i.e. using quantum atomic wave interferometry. Although STE-QUEST was finally not selected in early 2014 because of budgetary and technological reasons, its science case was very highly rated. Our aim is to expose that science to a large audience in order to allow future projects and proposals to take advantage of the STE-QUEST experience.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا