ﻻ يوجد ملخص باللغة العربية
In this note we consider the issue of the classical equivalence of scale-invariant gravity in the Einstein and in the Jordan frames. We first consider the simplest example $f(R)=R^{2}$ and show explicitly that the equivalence breaks down when dealing with Ricci-flat solutions. We discuss the link with the fact that flat solutions in quadratic gravity have zero energy. We also consider the case of scale-invariant tensor-scalar gravity and general $f(R)$ theories. We argue that all scale-invariant gravity models have Ricci flat solutions in the Jordan frame that cannot be mapped into the Einstein frame. In particular, the Minkowski metric exists only in the Jordan frame. In this sense, the two frames are not equivalent.
It is shown that the Jordan frame and its conformally transformed version, the Einstein frame of nonminimally coupled theories of gravity, are actually equivalent at the quantum level. The example of the theory taken up is the Brans-Dicke theory, and
General Relativity is today the best theory of gravity addressing a wide range of phenomena. Our understanding of physical laws, from cosmology to local scales, cannot be properly formulated without taking into account it. It is based on one of the m
To ensure the existence of a well defined linearized gravitational wave equation, we show that the spacetimes in the so-called Einstein-Gauss-Bonnet gravity in four dimension have to be locally conformally flat.
Vacuum Brans-Dicke theory can be self-consistently described in two frames, the Jordan frame (JF) and the conformally rescaled Einstein frame (EF), the transformations providing an easy passage from one frame to the other at the level of actions and
We show that Liouville gravity arises as the limit of pure Einstein gravity in 2+epsilon dimensions as epsilon goes to zero, provided Newtons constant scales with epsilon. Our procedure - spherical reduction, dualization, limit, dualizing back - pass