ﻻ يوجد ملخص باللغة العربية
A treatment in a neighborhood and at a point of the equivalence principle on the basis of derivations of the tensor algebra over a manifold is given. Necessary and sufficient conditions are given for the existence of local bases, called normal frames, in which the components of derivations vanish in a neighborhood or at a point. These frames (bases), if any, are explicitly described and the problem of their holonomicity is considered. In particular, the obtained results concern symmetric as well as nonsymmetric linear connections.
It is shown that the Jordan frame and its conformally transformed version, the Einstein frame of nonminimally coupled theories of gravity, are actually equivalent at the quantum level. The example of the theory taken up is the Brans-Dicke theory, and
We describe a geometric and symmetry-based formulation of the equivalence principle in non-relativistic physics. It applies both on the classical and quantum levels and states that the Newtonian potential can be eliminated in favor of a curved and ti
In this note we consider the issue of the classical equivalence of scale-invariant gravity in the Einstein and in the Jordan frames. We first consider the simplest example $f(R)=R^{2}$ and show explicitly that the equivalence breaks down when dealing
We used a continuously rotating torsion balance instrument to measure the acceleration difference of beryllium and titanium test bodies towards sources at a variety of distances. Our result Delta a=(0.6+/-3.1)x10^-15 m/s^2 improves limits on equivale
We investigate leading order deviations from general relativity that violate the Einstein equivalence principle in the gravitational standard model extension. We show that redshift experiments based on matter waves and clock comparisons are equivalen