ﻻ يوجد ملخص باللغة العربية
All N=4 conformal supergravities in four space-time dimensions are constructed. These are the only N=4 supergravity theories whose actions are invariant under off-shell supersymmetry. They are encoded in terms of a holomorphic function that is homogeneous of zeroth degree in scalar fields that parametrize an SU(1,1)/U(1) coset space. When this function equals a constant the Lagrangian is invariant under continuous SU(1,1) transformations. The construction of these higher-derivative invariants also opens the door to various applications for non-conformal theories.
We consider classes of T_6 orientifolds, where the orientifold projection contains an inversion I_{9-p} on 9-p coordinates, transverse to a Dp-brane. In absence of fluxes, the massless sector of these models corresponds to diverse forms of N=4 superg
Based on the known non-linear transformation rules of the Weyl multiplet fields, the action of $N=4$ conformal supergravity is constructed up to terms quadratic in the fermion fields. The bosonic sector corrects a recent result in the literature.
We review the question of quantum consistency of N=4 conformal supergravity in 4 dimensions. The UV divergences and anomalies of the standard (minimal) conformal supergravity where the complex scalar $phi$ is not coupled to the Weyl graviton kinetic
For dyons in heterotic string theory compactified on a six-torus, with electric charge vector Q and magnetic charge vector P, the positive integer I = g.c.d.(Q wedge P) is an invariant of the U-duality group. We propose the microscopic theory for com
We give an explicit formula for all tree amplitudes in N=4 SYM, derived by solving the recently presented supersymmetric tree-level recursion relations. The result is given in a compact, manifestly supersymmetric form and we show how to extract from