ترغب بنشر مسار تعليمي؟ اضغط هنا

All tree-level amplitudes in N=4 SYM

343   0   0.0 ( 0 )
 نشر من قبل J. M. Drummond
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give an explicit formula for all tree amplitudes in N=4 SYM, derived by solving the recently presented supersymmetric tree-level recursion relations. The result is given in a compact, manifestly supersymmetric form and we show how to extract from it all possible component amplitudes for an arbitrary number of external particles and any arrangement of external particles and helicities. We focus particularly on extracting gluon amplitudes which are valid for any gauge theory. The formula for all tree-level amplitudes is given in terms of nested sums of dual superconformal invariants and it therefore manifestly respects both conventional and dual superconformal symmetry.



قيم البحث

اقرأ أيضاً

We perform the twistor (half-Fourier) transform of all tree n-particle superamplitudes in N=4 SYM and show that it has a transparent geometric interpretation. We find that the N^kMHV amplitude is supported on a set of (2k+1) intersecting lines in twi stor space and demonstrate that the corresponding line moduli form a lightlike (2k+1)-gon in moduli space. This polygon is triangulated into two kinds of lightlike triangles lying in different planes. We formulate simple graphical rules for constructing the triangulated polygons, from which the analytic expressions of the N^kMHV amplitudes follow directly, both in twistor and in momentum space. We also discuss the ordinary and dual conformal properties and the cancellation of spurious singularities in twistor space.
In this paper we present the all-loop conjecture for integrands of Wilson line form factors, also known as reggeon amplitudes, in N=4 SYM. In particular we present a new gluing operation in momentum twistor space used to obtain reggeon tree-level amp litudes and loop integrands starting from corresponding expressions for on-shell amplitudes. The introduced gluing procedure is used to derive BCFW recursions both for tree-level reggeon amplitudes and their loop integrands. In addition we provide predictions for reggeon loop integrands written in the basis of local integrals. As a check of the correctness of gluing operation at loop level we derive the expression for LO BFKL kernel in N=4 SYM.
148 - L.V.Bork , A.I.Onishchenko 2017
We consider the description of reggeon amplitudes (Wilson lines form factors) in N=4 SYM within the framework of four dimensional ambitwistor string theory. The latter is used to derive scattering equations representation for reggeon amplitudes with multiple reggeized gluons present. It is shown, that corresponding tree-level string correlation function correctly reproduces previously obtained Grassmannian integral representation of reggeon amplitudes in N=4 SYM.
Using four-dimensional unitarity and MHV-rules we calculate the one-loop MHV amplitudes with all external particles in the adjoint representation for N=2 supersymmetric QCD with N_f fundamental flavours. We start by considering such amplitudes in the superconformal N=4 gauge theory where the N=4 supersymmetric Ward identities (SWI) guarantee that all MHV amplitudes for all types of external particles are given by the corresponding tree-level result times a universal helicity- and particle-type-independent contribution. In N=2 SQCD the MHV amplitudes differ from those for N=4 for general values of N_f and N_c. However, for N_f=2N_c where the N=2 SQCD is conformal, the N=2 MHV amplitudes (with all external particles in the adjoint representation) are identical to the N=4results. This factorisation at one-loop motivates us to pose a question if there may be a BDS-like factorisation for these amplitudes which also holds at higher orders of perturbation theory in superconformal N=2 theory.
Very recently in arXiv:0705.0303 Alday and Maldacena gave a string theory prescription for computing (all) planar amplitudes in N=4 supersymmetric gauge theory at strong coupling using the AdS/CFT correspondence. These amplitudes are determined by a classical string solution and contain a universal exponential factor involving the action of the classical string. On the gauge theory side, expressions for perturbative amplitudes at strong coupling were previously proposed only for specific helicities of external particles -- the maximally helicity violating or MHV amplitudes. These follow from the exponential ansatz of Bern, Dixon and Smirnov for MHV amplitudes in N=4 SYM. In this paper we examine the amplitudes dependence on helicities and particle-types of external states. We consider the prefactor of string amplitudes and give arguments suggesting that the prefactor at strong coupling should be the same as the Yang-Mills tree-level amplitude for the same process. This implies that scattering amplitudes in N=4 SYM simplify dramatically in the strong coupling limit. It follows from our proposal that in this limit all (MHV and non-MHV) n-point amplitudes are given by the (known) tree-level Yang-Mills result times the helicity-independent (and particle-type-independent) universal exponential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا