ترغب بنشر مسار تعليمي؟ اضغط هنا

On divergences in non-minimal N=4 conformal supergravity

77   0   0.0 ( 0 )
 نشر من قبل Arkady Tseytlin
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف A. A. Tseytlin




اسأل ChatGPT حول البحث

We review the question of quantum consistency of N=4 conformal supergravity in 4 dimensions. The UV divergences and anomalies of the standard (minimal) conformal supergravity where the complex scalar $phi$ is not coupled to the Weyl graviton kinetic term can be cancelled by coupling this theory to N=4 super Yang-Mills with gauge group of dimension 4. The same turns out to be true also for the non-minimal N=4 conformal supergravity with the action (recently constructed in arXiv:1609.09083) depending on an arbitrary holomorphic function $f(phi)$. The special case of the non-minimal conformal supergravity with $f= e^{2phi}$ appears in the twistor-string theory. We show that divergences and anomalies do not depend on the form of the function $f$ and thus can be cancelled just as in the minimal $f=1$ case by coupling the theory to four N=4 vector multiplets.



قيم البحث

اقرأ أيضاً

Based on the known non-linear transformation rules of the Weyl multiplet fields, the action of $N=4$ conformal supergravity is constructed up to terms quadratic in the fermion fields. The bosonic sector corrects a recent result in the literature.
The superspace formulation of N=1 conformal supergravity in four dimensions is demonstrated to be equivalent to the conventional component field approach based on the superconformal tensor calculus. The detailed correspondence between two approaches is explicitly given for various quantities; superconformal gauge fields, curvatures and curvature constraints, general conformal multiplets and their transformation laws, and so on. In particular, we carefully analyze the curvature constraints leading to the superconformal algebra and also the superconformal gauge fixing leading to Poincare supergravity since they look rather different between two approaches.
We solve the Wess-Zumino consistency conditions of $mathcal{N}=1$ off-shell conformal supergravity in four dimensions and determine the general form of the superconformal anomalies for arbitrary $a$ and $c$ anomaly coefficients to leading non trivial order in the gravitino. Besides the well known Weyl and $R$-symmetry anomalies, we compute explicitly the fermionic $mathcal{Q}$- and $mathcal{S}$-supersymmetry anomalies. In particular, we show that $mathcal{Q}$-supersymmetry is anomalous if and only if $R$-symmetry is anomalous. The $mathcal{Q}$- and $mathcal{S}$-supersymmetry anomalies give rise to an anomalous supersymmetry transformation for the supercurrent on curved backgrounds admitting Killing spinors, resulting in a deformed rigid supersymmetry algebra. Our results may have implications for supersymmetric localization and supersymmetry phenomenology. Analogous results are expected to hold in dimensions two and six and for other supergravity theories. The present analysis of the Wess-Zumino consistency conditions reproduces the holographic result of arxiv:1703.04299 and generalizes it to arbitrary $a$ and $c$ anomaly coefficients.
We put forward a unimodular $N=1, d=4$ anti-de Sitter supergravity theory off shell. This theory, where the Cosmological Constant does not couple to gravity, has a unique maximally supersymmetric classical vacuum which is Anti-de Sitter spacetime wit h radius given by the equation of motion of the auxiliary scalar field, ie, $S=frac{3}{kappa L}$. However, we see that the non-supersymmetric classical vacua of the unimodular theory are Minkowski and de Sitter spacetimes as well as anti-de Sitter spacetime with radius $l eq L$.
We consider Abelian tensor hierarchy in four-dimensional ${cal N}=1$ supergravity in the conformal superspace formalism, where the so-called covariant approach is used to antisymmetric tensor fields. We introduce $p$-form gauge superfields as superfo rms in the conformal superspace. We solve the Bianchi identities under the constraints for the superforms. As a result, each of form fields is expressed by a single gauge invariant superfield. The action of superforms is shown with the invariant superfields. We also show the relation between the superspace formalism and the superconformal tensor calculus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا