ترغب بنشر مسار تعليمي؟ اضغط هنا

Annotating Derivations: A New Evaluation Strategy and Dataset for Algebra Word Problems

93   0   0.0 ( 0 )
 نشر من قبل Shyam Upadhyay
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new evaluation for automatic solvers for algebra word problems, which can identify mistakes that existing evaluations overlook. Our proposal is to evaluate such solvers using derivations, which reflect how an equation system was constructed from the word problem. To accomplish this, we develop an algorithm for checking the equivalence between two derivations, and show how derivation an- notations can be semi-automatically added to existing datasets. To make our experiments more comprehensive, we include the derivation annotation for DRAW-1K, a new dataset containing 1000 general algebra word problems. In our experiments, we found that the annotated derivations enable a more accurate evaluation of automatic solvers than previously used metrics. We release derivation annotations for over 2300 algebra word problems for future evaluations.



قيم البحث

اقرأ أيضاً

Automatic math word problem solving has attracted growing attention in recent years. The evaluation datasets used by previous works have serious limitations in terms of scale and diversity. In this paper, we release a new large-scale and template-ric h math word problem dataset named Ape210K. It consists of 210K Chinese elementary school-level math problems, which is 9 times the size of the largest public dataset Math23K. Each problem contains both the gold answer and the equations needed to derive the answer. Ape210K is also of greater diversity with 56K templates, which is 25 times more than Math23K. Our analysis shows that solving Ape210K requires not only natural language understanding but also commonsense knowledge. We expect Ape210K to be a benchmark for math word problem solving systems. Experiments indicate that state-of-the-art models on the Math23K dataset perform poorly on Ape210K. We propose a copy-augmented and feature-enriched sequence to sequence (seq2seq) model, which outperforms existing models by 3.2% on the Math23K dataset and serves as a strong baseline of the Ape210K dataset. The gap is still significant between human and our baseline model, calling for further research efforts. We make Ape210K dataset publicly available at https://github.com/yuantiku/ape210k
While deep learning models have greatly improved the performance of most artificial intelligence tasks, they are often criticized to be untrustworthy due to the black-box problem. Consequently, many works have been proposed to study the trustworthine ss of deep learning. However, as most open datasets are designed for evaluating the accuracy of model outputs, there is still a lack of appropriate datasets for evaluating the inner workings of neural networks. The lack of datasets obviously hinders the development of trustworthiness research. Therefore, in order to systematically evaluate the factors for building trustworthy systems, we propose a novel and well-annotated sentiment analysis dataset to evaluate robustness and interpretability. To evaluate these factors, our dataset contains diverse annotations about the challenging distribution of instances, manual adversarial instances and sentiment explanations. Several evaluation metrics are further proposed for interpretability and robustness. Based on the dataset and metrics, we conduct comprehensive comparisons for the trustworthiness of three typical models, and also study the relations between accuracy, robustness and interpretability. We release this trustworthiness evaluation dataset at url{https://github/xyz} and hope our work can facilitate the progress on building more trustworthy systems for real-world applications.
Math word problem (MWP) is a challenging and critical task in natural language processing. Many recent studies formalize MWP as a generation task and have adopted sequence-to-sequence models to transform problem descriptions to mathematical expressio ns. However, mathematical expressions are prone to minor mistakes while the generation objective does not explicitly handle such mistakes. To address this limitation, we devise a new ranking task for MWP and propose Generate & Rank, a multi-task framework based on a generative pre-trained language model. By joint training with generation and ranking, the model learns from its own mistakes and is able to distinguish between correct and incorrect expressions. Meanwhile, we perform tree-based disturbance specially designed for MWP and an online update to boost the ranker. We demonstrate the effectiveness of our proposed method on the benchmark and the results show that our method consistently outperforms baselines in all datasets. Particularly, in the classical Math23k, our method is 7% (78.4% $rightarrow$ 85.4%) higher than the state-of-the-art.
In recent years, distantly-supervised relation extraction has achieved a certain success by using deep neural networks. Distant Supervision (DS) can automatically generate large-scale annotated data by aligning entity pairs from Knowledge Bases (KB) to sentences. However, these DS-generated datasets inevitably have wrong labels that result in incorrect evaluation scores during testing, which may mislead the researchers. To solve this problem, we build a new dataset NYTH, where we use the DS-generated data as training data and hire annotators to label test data. Compared with the previous datasets, NYT-H has a much larger test set and then we can perform more accurate and consistent evaluation. Finally, we present the experimental results of several widely used systems on NYT-H. The experimental results show that the ranking lists of the comparison systems on the DS-labelled test data and human-annotated test data are different. This indicates that our human-annotated data is necessary for evaluation of distantly-supervised relation extraction.
353 - Zhen Wang , Xu Shan , Jie Yang 2021
Current news datasets merely focus on text features on the news and rarely leverage the feature of images, excluding numerous essential features for news classification. In this paper, we propose a new dataset, N15News, which is generated from New Yo rk Times with 15 categories and contains both text and image information in each news. We design a novel multitask multimodal network with different fusion methods, and experiments show multimodal news classification performs better than text-only news classification. Depending on the length of the text, the classification accuracy can be increased by up to 5.8%. Our research reveals the relationship between the performance of a multimodal classifier and its sub-classifiers, and also the possible improvements when applying multimodal in news classification. N15News is shown to have great potential to prompt the multimodal news studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا