ﻻ يوجد ملخص باللغة العربية
Math word problem (MWP) is a challenging and critical task in natural language processing. Many recent studies formalize MWP as a generation task and have adopted sequence-to-sequence models to transform problem descriptions to mathematical expressions. However, mathematical expressions are prone to minor mistakes while the generation objective does not explicitly handle such mistakes. To address this limitation, we devise a new ranking task for MWP and propose Generate & Rank, a multi-task framework based on a generative pre-trained language model. By joint training with generation and ranking, the model learns from its own mistakes and is able to distinguish between correct and incorrect expressions. Meanwhile, we perform tree-based disturbance specially designed for MWP and an online update to boost the ranker. We demonstrate the effectiveness of our proposed method on the benchmark and the results show that our method consistently outperforms baselines in all datasets. Particularly, in the classical Math23k, our method is 7% (78.4% $rightarrow$ 85.4%) higher than the state-of-the-art.
Previous math word problem solvers following the encoder-decoder paradigm fail to explicitly incorporate essential math symbolic constraints, leading to unexplainable and unreasonable predictions. Herein, we propose Neural-Symbolic Solver (NS-Solver)
A practical automatic textual math word problems (MWPs) solver should be able to solve various textual MWPs while most existing works only focused on one-unknown linear MWPs. Herein, we propose a simple but efficient method called Universal Expressio
Approaches to Grounded Language Learning typically focus on a single task-based final performance measure that may not depend on desirable properties of the learned hidden representations, such as their ability to predict salient attributes or to gen
Automatic math word problem solving has attracted growing attention in recent years. The evaluation datasets used by previous works have serious limitations in terms of scale and diversity. In this paper, we release a new large-scale and template-ric
Math word problem (MWP) solving is the task of transforming a sequence of natural language problem descriptions to executable math equations. An MWP solver not only needs to understand complex scenarios described in the problem texts, but also identi