ﻻ يوجد ملخص باللغة العربية
Automatic math word problem solving has attracted growing attention in recent years. The evaluation datasets used by previous works have serious limitations in terms of scale and diversity. In this paper, we release a new large-scale and template-rich math word problem dataset named Ape210K. It consists of 210K Chinese elementary school-level math problems, which is 9 times the size of the largest public dataset Math23K. Each problem contains both the gold answer and the equations needed to derive the answer. Ape210K is also of greater diversity with 56K templates, which is 25 times more than Math23K. Our analysis shows that solving Ape210K requires not only natural language understanding but also commonsense knowledge. We expect Ape210K to be a benchmark for math word problem solving systems. Experiments indicate that state-of-the-art models on the Math23K dataset perform poorly on Ape210K. We propose a copy-augmented and feature-enriched sequence to sequence (seq2seq) model, which outperforms existing models by 3.2% on the Math23K dataset and serves as a strong baseline of the Ape210K dataset. The gap is still significant between human and our baseline model, calling for further research efforts. We make Ape210K dataset publicly available at https://github.com/yuantiku/ape210k
Math word problem (MWP) is a challenging and critical task in natural language processing. Many recent studies formalize MWP as a generation task and have adopted sequence-to-sequence models to transform problem descriptions to mathematical expressio
Previous math word problem solvers following the encoder-decoder paradigm fail to explicitly incorporate essential math symbolic constraints, leading to unexplainable and unreasonable predictions. Herein, we propose Neural-Symbolic Solver (NS-Solver)
A practical automatic textual math word problems (MWPs) solver should be able to solve various textual MWPs while most existing works only focused on one-unknown linear MWPs. Herein, we propose a simple but efficient method called Universal Expressio
The problem of designing NLP solvers for math word problems (MWP) has seen sustained research activity and steady gains in the test accuracy. Since existing solvers achieve high performance on the benchmark datasets for elementary level MWPs containi
We propose a new evaluation for automatic solvers for algebra word problems, which can identify mistakes that existing evaluations overlook. Our proposal is to evaluate such solvers using derivations, which reflect how an equation system was construc