ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic catalysis of a finite size pion condensate

65   0   0.0 ( 0 )
 نشر من قبل Alejandro Ayala
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Bose-Einstein condensation of a finite size pion gas subject to the influence of a magnetic field. We find the expressions for the critical chemical potential and temperature for the onset of condensation. We show that for values of the external magnetic flux larger than the elemental flux, the critical temperature is larger than the one obtained by considering only finite size effects. We use experimentally reported values of pion source sizes and multiplicities at LHC energies to show that if the magnetic flux, produced initially in peripheral heavy-ion collision, is at least partially preserved up to the hadronic phase, the combined finite size and magnetic field effects give rise to a critical temperature above the kinetic freeze-out temperature. We discuss the implications for the evolution of the pion system created in relativistic heavy-ion collisions.



قيم البحث

اقرأ أيضاً

Two-color lattice QCD with N_f=4 staggered fermion degrees of freedom (no rooting trick is applied) with equal electric charge q is studied in a homogeneous magnetic background field B and at non-zero temperature T. In order to circumvent renormaliza tion as a function of the bare coupling we apply a fixed-scale approach. We study the influence of the magnetic field on the critical temperature. At rather small pseudo-scalar meson mass ($m_{pi} approx 175 mathrm{MeV} approx T_c(B=0)$) we confirm a monotonic rise of the quark condensate $<bar{psi} psi>$ with increasing magnetic field strength, i.e. magnetic catalysis, as long as one is staying within the confinement or deconfinement phase. In the transition region we find indications for a non-monotonic behavior of $T_c(B)$ at low magnetic field strength ($qB<0.8 mathrm{GeV}^2$) and a clear rise at stronger magnetic field. The conjectured existence of a minimum value $T_c(B^{*}) < T_c(B=0)$ would leave a temperature window for a decrease of $<bar{psi} psi>$ with rising $B$ (inverse magnetic catalysis) also in the present model.
We investigate the QCD phase diagram for nonzero background magnetic fields using first-principles lattice simulations. At the physical point (in terms of quark masses), the thermodynamics of this system is controlled by two opposing effects: magneti c catalysis (enhancement of the quark condensate) at low temperature and inverse magnetic catalysis (reduction of the condensate) in the transition region. While the former is known to be robust and independent of the details of the interactions, inverse catalysis arises as a result of a delicate competition, effective only for light quarks. By performing simulations at different quark masses, we determine the pion mass above which inverse catalysis does not take place in the transition region anymore. Even for pions heavier than this limiting value - where the quark condensate undergoes magnetic catalysis - our results are consistent with the notion that the transition temperature is reduced by the magnetic field. These findings will be useful to guide low-energy models and effective theories of QCD.
We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when com pared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation.
We study one pion production in both charged and neutral current neutrino nucleus scattering for neutrino energies below 2 GeV. We use a theoretical model for one pion production at the nucleon level that we correct for medium effects. The results ar e incorporated into a cascade program that apart from production also includes the pion final state interaction inside the nucleus. Besides, in some specific channels coherent pion production is also possible and we evaluate its contribution as well. Our results for total and differential cross sections are compared with recent data from the MiniBooNE Collaboration. The model provides an overall acceptable description of data, better for NC than for CC channels, although theory is systematically below data. Differential cross sections, folded with the full neutrino flux, show that most of the missing pions lie on the forward direction and at high energies.
We sketch the calculation of the pion structure functions within the DSE framework, following two alternative albeit consistent approaches, and discuss then their QCD evolution, the running driven by an effective charge, from a hadronic scale up to any larger one accessible to experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا