ﻻ يوجد ملخص باللغة العربية
We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation.
We give a continuum limit value of the lowest moment of a twist-2 operator in pion states from non-perturbative lattice calculations. We find that the non-perturbatively obtained renormalization group invariant matrix element is <x>_{RGI} = 0.179(11)
We present the first exploratory lattice QCD calculation of the pion valence quark distribution extracted from spatially separated current-current correlations in coordinate space. We show that an antisymmetric combination of vector and axial-vector
We study the Bose-Einstein condensation of a finite size pion gas subject to the influence of a magnetic field. We find the expressions for the critical chemical potential and temperature for the onset of condensation. We show that for values of the
In order to reduce the current hadronic uncertainties in the theory prediction for the anomalous magnetic moment of the muon, lattice calculations need to reach sub-percent accuracy on the hadronic-vacuum-polarization contribution. This requires the
In order to reach (sub-)per cent level precision in lattice calculations of the hadronic vacuum polarisation, isospin breaking corrections must be included. This requires introducing QED on the lattice, and the associated finite-size effects are pote