ﻻ يوجد ملخص باللغة العربية
Let $Z$ be the symmetric cone of $r times r$ positive definite Hermitian matrices over a real division algebra $mathbb F$. Then $Z$ admits a natural family of invariant differential operators -- the Capelli operators $C_lambda$ -- indexed by partitions $lambda$ of length at most $r$, whose eigenvalues are given by specialization of Knop--Sahi interpolation polynomials. In this paper we consider a double fibration $Y longleftarrow X longrightarrow Z$ where $Y$ is the Grassmanian of $r$-dimensional subspaces of $mathbb F^n $ with $n geq 2r$. Using this we construct a family of invariant differential operators $D_{lambda,s}$ on $Y$ that we refer to as quadratic Capelli operators. Our main result shows that the eigenvalues of the $D_{lambda,s}$ are given by specializations of Okounkov interpolation polynomials.
Let $(V,omega)$ be an orthosympectic $mathbb Z_2$-graded vector space and let $mathfrak g:=mathfrak{gosp}(V,omega)$ denote the Lie superalgebra of similitudes of $(V,omega)$. When the space $mathscr P(V)$ of superpolynomials on $V$ is emph{not} a com
The Capelli problem for the symmetric pairs $(mathfrak{gl}times mathfrak{gl},mathfrak{gl})$ $(mathfrak{gl},mathfrak{o})$, and $(mathfrak{gl},mathfrak{sp})$ is closely related to the theory of Jack polynomials and shifted Jack polynomials for special
In this paper we study properties of a homomorphism $rho$ from the universal enveloping algebra $U=U(mathfrak{gl}(n+1))$ to a tensor product of an algebra $mathcal D(n)$ of differential operators and $U(mathfrak{gl}(n))$. We find a formula for the im
Inspired by the Capelli identities for group determinants obtained by T^oru Umeda, we give a basis of the center of the group algebra of any finite group by using Capelli identities for irreducible representations. The Capelli identities for irredu
For a finite dimensional unital complex simple Jordan superalgebra $J$, the Tits-Kantor-Koecher construction yields a 3-graded Lie superalgebra $mathfrak g_flatcong mathfrak g_flat(-1)oplusmathfrak g_flat(0)oplusmathfrak g_flat(1)$, such that $mathfr