ﻻ يوجد ملخص باللغة العربية
The Capelli problem for the symmetric pairs $(mathfrak{gl}times mathfrak{gl},mathfrak{gl})$ $(mathfrak{gl},mathfrak{o})$, and $(mathfrak{gl},mathfrak{sp})$ is closely related to the theory of Jack polynomials and shifted Jack polynomials for special values of the parameter. In this paper, we extend this connection to the Lie superalgebra setting, namely to the supersymmetric pairs $(mathfrak{g},mathfrak{g}):=(mathfrak{gl}(m|2n),mathfrak{osp}(m|2n))$ and $(mathfrak{gl}(m|n)timesmathfrak{gl}(m|n),mathfrak{gl}(m|n))$, acting on $W:=S^2(mathbb C^{m|2n})$ and $mathbb C^{m|n}otimes(mathbb C^{m|n})^*$. We also give an affirmative answer to the abstract Capelli problem for these cases.
Let $mathfrak l:= mathfrak q(n)timesmathfrak q(n)$, where $mathfrak q(n)$ denotes the queer Lie superalgebra. The associative superalgebra $V$ of type $Q(n)$ has a left and right action of $mathfrak q(n)$, and hence is equipped with a canonical $math
In this paper, we used the free fields of Wakimoto to construct a class of irreducible representations for the general linear Lie superalgebra $mathfrak{gl}_{m|n}(mathbb{C})$. The structures of the representations over the general linear Lie superalg
We study solutions of the Bethe ansatz equations of the non-homogeneous periodic XXX model associated to super Yangian $mathrm Y(mathfrak{gl}_{m|n})$. To a solution we associate a rational difference operator $mathcal D$ and a superspace of rational
Let $W_{m|n}$ be the (finite) $W$-algebra attached to the principal nilpotent orbit in the general linear Lie superalgebra $mathfrak{gl}_{m|n}(mathbb{C})$. In this paper we study the {em Whittaker coinvariants functor}, which is an exact functor from
For a finite dimensional unital complex simple Jordan superalgebra $J$, the Tits-Kantor-Koecher construction yields a 3-graded Lie superalgebra $mathfrak g_flatcong mathfrak g_flat(-1)oplusmathfrak g_flat(0)oplusmathfrak g_flat(1)$, such that $mathfr