ترغب بنشر مسار تعليمي؟ اضغط هنا

The Capelli eigenvalue problem for Lie superalgebras

402   0   0.0 ( 0 )
 نشر من قبل Hadi Salmasian
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a finite dimensional unital complex simple Jordan superalgebra $J$, the Tits-Kantor-Koecher construction yields a 3-graded Lie superalgebra $mathfrak g_flatcong mathfrak g_flat(-1)oplusmathfrak g_flat(0)oplusmathfrak g_flat(1)$, such that $mathfrak g_flat(-1)cong J$. Set $V:=mathfrak g_flat(-1)^*$ and $mathfrak g:=mathfrak g_flat(0)$. In most cases, the space $mathcal P(V)$ of superpolynomials on $V$ is a completely reducible and multiplicity-free representation of $mathfrak g$, with a decomposition $mathcal P(V):=bigoplus_{lambdainOmega}V_lambda$, where $left(V_lambdaright)_{lambdainOmega}$ is a family of irreducible $mathfrak g$-modules parametrized by a set of partitions $Omega$. In these cases, one can define a natural basis $left(D_lambdaright)_{lambdainOmega}$ of Capelli operators for the algebra $mathcal{PD}(V)^{mathfrak g}$. In this paper we complete the solution to the Capelli eigenvalue problem, which is to determine the scalar $c_mu(lambda)$ by which $D_mu$ acts on $V_lambda$. We associate a restricted root system $mathit{Sigma}$ to the symmetric pair $(mathfrak g,mathfrak k)$ that corresponds to $J$, which is either a deformed root system of type $mathsf{A}(m,n)$ or a root system of type $mathsf{Q}(n)$. We prove a necessary and sufficient condition on the structure of $mathit{Sigma}$ for $mathcal{P}(V)$ to be completely reducible and multiplicity-free. When $mathit{Sigma}$ satisfies the latter condition we obtain an explicit formula for the eigenvalue $c_mu(lambda)$, in terms of Sergeev-Veselovs shifted super Jack polynomials when $mathit{Sigma}$ is of type $mathsf{A}(m,n)$, and Okounkov-Ivanovs factorial Schur $Q$-polynomials when $mathit{Sigma}$ is of type $mathsf{Q}(n)$.



قيم البحث

اقرأ أيضاً

Let $mathfrak l:= mathfrak q(n)timesmathfrak q(n)$, where $mathfrak q(n)$ denotes the queer Lie superalgebra. The associative superalgebra $V$ of type $Q(n)$ has a left and right action of $mathfrak q(n)$, and hence is equipped with a canonical $math frak l$-module structure. We consider a distinguished basis ${D_lambda}$ of the algebra of $mathfrak l$-invariant super-polynomial differential operators on $V$, which is indexed by strict partitions of length at most $n$. We show that the spectrum of the operator $D_lambda$, when it acts on the algebra $mathscr P(V)$ of super-polynomials on $V$, is given by the factorial Schur $Q$-function of Okounkov and Ivanov. This constitutes a refinement and a new proof of a result of Nazarov, who computed the top-degree homogeneous part of the Harish-Chandra image of $D_lambda$. As a further application, we show that the radial projections of the spherical super-polynomials corresponding to the diagonal symmetric pair $(mathfrak l,mathfrak m)$, where $mathfrak m:=mathfrak q(n)$, of irreducible $mathfrak l$-submodules of $mathscr P(V)$ are the classical Schur $Q$-functions.
90 - I. Dimitrov , R. Fioresi 2018
We study the eigenspace decomposition of a basic classical Lie superalgebra under the adjoint action of a toral subalgebra, thus extending results of Kostant. In recognition of Kostants contribution we refer to the eigenspaces appearing in the decomp osition as Kostant roots. We then prove that Kostant root systems inherit the main properties of classical root systems. Our approach is combinatorial in nature and utilizes certain graphs naturally associated with Kostant root systems. In particular, we reprove Kostants results without making use of the Killing form.
110 - Yucai Su , R.B. Zhang 2019
We investigate a new cohomology of Lie superalgebras, which may be compared to a de Rham cohomology of Lie supergroups involving both differential and integral forms. It is defined by a BRST complex of Lie superalgebra modules, which is formulated in terms of a Weyl superalgebra and incorporates inequivalent representations of the bosonic Weyl subalgebra. The new cohomology includes the standard Lie superalgebra cohomology as a special case. Examples of new cohomology groups are computed.
We prove that the tensor product of a simple and a finite dimensional $mathfrak{sl}_n$-module has finite type socle. This is applied to reduce classification of simple $mathfrak{q}(n)$-supermodules to that of simple $mathfrak{sl}_n$-modules. Rough st ructure of simple $mathfrak{q}(n)$-supermodules, considered as $mathfrak{sl}_n$-modules, is described in terms of the combinatorics of category $mathcal{O}$.
In this paper the authors introduce a class of parabolic subalgebras for classical simple Lie superalgebras associated to the detecting subalgebras introduced by Boe, Kujawa and Nakano. These parabolic subalgebras are shown to have good cohomological properties governed by the Bott-Borel-Weil theorem involving the zero component of the Lie superalgebra in conjunction with the odd roots. These results are later used to verify an open conjecture given by Boe, Kujawa and Nakano pertaining to the equality of various support varieties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا