ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Line Defect in NdTiO3 Perovskite

99   0   0.0 ( 0 )
 نشر من قبل Jong Seok Jeong
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Perovskite oxides form an eclectic class of materials owing to their structural flexibility in accommodating cations of different sizes and valences. They host well known point and planar defects, but so far no line defect has been identified other than dislocations. Using analytical scanning transmission electron microscopy (STEM) and ab initio calculations we have detected and characterized the atomic and electronic structures of a novel line defect in NdTiO3 perovskite. It appears in STEM images as a perovskite cell rotated by 45 degrees. It consists of self-organized Ti-O vacancy lines replaced by Nd columns surrounding a central Ti-O octahedral chain containing Ti4+ ions, as opposed to Ti3+ in the host. The distinct Ti valence in this line defect introduces the possibility of engineering exotic conducting properties in a single preferred direction and tailoring novel desirable functionalities in this Mott insulator.



قيم البحث

اقرأ أيضاً

We report on density-functional-based tight-binding (DFTB) simulations of a series of amorphous arsenic sulfide models. In addition to the charged coordination defects previously proposed to exist in chalcogenide glasses, a novel defect pair, [As4]-- [S3]+, consisting of a four-fold coordinated arsenic site in a seesaw configuration and a three-fold coordinated sulfur site in a planar trigonal configuration, was found in several models. The valence-alternation pairs S3+-S1- are converted into [As4]--[S3]+ pairs under HOMO-to-LUMO electronic excitation. This structural transformation is accompanied by a decrease in the size of the HOMO-LUMO band gap, which suggests that such transformations could contribute to photo-darkening in these materials.
112 - L. Wu , Y. Zhu , S. Park 2004
Using transmission electron microscopy (TEM) we studied CaCu3Ti4O12, an intriguing material that exhibits a huge dielectric response, up to kilohertz frequencies, over a wide range of temperature. Neither in single crystals, nor in polycrystalline sa mples, including sintered bulk- and thin-films, did we observe the twin domains suggested in the literature. Nevertheless, in the single crystals, we saw a very high density of dislocations with a Burger vector of [110], as well as regions with cation disorder and planar defects with a displacement vector 1/4[110]. In the polycrystalline samples, we observed many grain boundaries with oxygen deficiency, in comparison with the grain interior. The defect-related structural disorders and inhomogeneity, serving as an internal barrier layer capacitance (IBLC) in a semiconducting matrix, might explain the very large dielectric response of the material. Our TEM study of the structure defects in CaCu3Ti4O12 supports a recently proposed morphological model with percolating conducting regions and blocking regions.
We review all the published literature and show that there is no experimental evidence for homogeneous tin titanate SnTiO3 in bulk or thin-film form. Instead a combination of unrelated artefacts are easily misinterpreted. The X-ray Bragg data are con taminated by double scattering from the Si substrate, giving a strong line at the 2-theta angle exactly where perovskite SnTiO3 should appear. The strong dielectric divergence near 560K is irreversible and arises from oxygen site detrapping, accompanied by Warburg/Randles interfacial anomalies. The small (4 uC/cm2) apparent ferroelectric hysteresis remains in samples shown in pure (Sn,Ti)O2 rutile/cassiterite, in which ferroelectricity is forbidden. Only very recent German work reveals real bulk SnTiO3, but this is completely inhomogeneous, consisting of an elaborate array of stacking faults, not suitable for ferroelectric devices. Unpublished TEM data reveal an inhomogeneous SnO layered structured thin films, related to shell-core structures. The harsh conclusion is that there is a combination of unrelated artefacts masquerading as ferroelectricity in powders and ALD films; and only a trace of a second phase in Cambridge PLD data suggests any perovskite content at all. The fact that X-ray, dielectric, and hysteresis data all lead to the wrong conclusion is instructive and reminds us of earlier work on copper calcium titanate (a well-known boundary-layer capacitor).
171 - Chang Woo Myung , , Jeonghun Yun 2017
As the race towards higher efficiency for inorganic/organic hybrid perovskite solar cells (PSCs) is becoming highly competitive, a design scheme to maximize carrier transport towards higher power efficiency has been urgently demanded. Here, we unrave l a hidden role of A-site cation of PSCs in carrier transport which has been largely neglected, i.e., tuning the Frohlich electron-phonon (e-ph) coupling of longitudinal optical (LO) phonon by A-site cations. The key for steering Frohlich polaron is to control the interaction strength and the number of proton (or lithium) coordination to halide ion. The coordination to I alleviates electron-phonon scattering by either decreasing the Born effective charge or absorbing the LO motion of I. This novel principle discloses lower electron-phonon coupling by several promising organic cations including hydroxyl-ammonium cation (NH$_3$OH$^+$) and possibly Li$^+$ solvating methylamine (Li$^+$NH$_2$CH$_3$) than methyl-ammonium cation. A new perspective on the role of A-site cation could help in improving power efficiency and accelerating the application of PSCs.
Single crystals of a new twinned hexagonal perovskite compound Sr8Os6.3O24 have been synthesized, and structural and magnetic properties have been determined. The compound crystallizes in a hexagonal cell with lattice parameters a = 9.6988(3) {AA} an d c = 18.1657(5) {AA}. The structure is an eight-layered hexagonal B-site deficient perovskite with the layer sequence (ccch)2 and represents the first example of a hexagonal structure among 5d oxides adopting a twin option. The sample shows spontaneous ferromagnetic magnetization below 430 K with a small saturation moment of 0.11 {mu}B/Os ion. This is the highest Curie temperature (TC) reported for any bulk perovskite containing only 5d ions at the B site.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا