ﻻ يوجد ملخص باللغة العربية
As the race towards higher efficiency for inorganic/organic hybrid perovskite solar cells (PSCs) is becoming highly competitive, a design scheme to maximize carrier transport towards higher power efficiency has been urgently demanded. Here, we unravel a hidden role of A-site cation of PSCs in carrier transport which has been largely neglected, i.e., tuning the Frohlich electron-phonon (e-ph) coupling of longitudinal optical (LO) phonon by A-site cations. The key for steering Frohlich polaron is to control the interaction strength and the number of proton (or lithium) coordination to halide ion. The coordination to I alleviates electron-phonon scattering by either decreasing the Born effective charge or absorbing the LO motion of I. This novel principle discloses lower electron-phonon coupling by several promising organic cations including hydroxyl-ammonium cation (NH$_3$OH$^+$) and possibly Li$^+$ solvating methylamine (Li$^+$NH$_2$CH$_3$) than methyl-ammonium cation. A new perspective on the role of A-site cation could help in improving power efficiency and accelerating the application of PSCs.
Perovskite semiconductors have demonstrated outstanding external luminescence quantum yields, enabling high power conversion efficiencies (PCE). However, the precise conditions to advance to an efficiency regime above monocrystalline silicon cells ar
Deposition of perovskite thin films by antisolvent engineering is one of the most common methods employed in perovskite photovoltaics research. Herein, we report on a general method that allows the fabrication of highly efficient perovskite solar cel
In this study, the optoelectronic properties of a monolithically integrated series-connected tandem solar cell are simulated. Following the large success of hybrid organic-inorganic perovskites, which have recently demonstrated large efficiencies wit
The performance of organometallic perovskite solar cells has rapidly surpassed that of both conventional dye-sensitised and organic photovoltaics. High power conversion efficiency can be realised in both mesoporous and thin-film device architectures.
Hybrid organic-inorganic halide perovskites with the prototype material of CH$_{3}$NH$_{3}$PbI$_{3}$ have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceed