ﻻ يوجد ملخص باللغة العربية
We review all the published literature and show that there is no experimental evidence for homogeneous tin titanate SnTiO3 in bulk or thin-film form. Instead a combination of unrelated artefacts are easily misinterpreted. The X-ray Bragg data are contaminated by double scattering from the Si substrate, giving a strong line at the 2-theta angle exactly where perovskite SnTiO3 should appear. The strong dielectric divergence near 560K is irreversible and arises from oxygen site detrapping, accompanied by Warburg/Randles interfacial anomalies. The small (4 uC/cm2) apparent ferroelectric hysteresis remains in samples shown in pure (Sn,Ti)O2 rutile/cassiterite, in which ferroelectricity is forbidden. Only very recent German work reveals real bulk SnTiO3, but this is completely inhomogeneous, consisting of an elaborate array of stacking faults, not suitable for ferroelectric devices. Unpublished TEM data reveal an inhomogeneous SnO layered structured thin films, related to shell-core structures. The harsh conclusion is that there is a combination of unrelated artefacts masquerading as ferroelectricity in powders and ALD films; and only a trace of a second phase in Cambridge PLD data suggests any perovskite content at all. The fact that X-ray, dielectric, and hysteresis data all lead to the wrong conclusion is instructive and reminds us of earlier work on copper calcium titanate (a well-known boundary-layer capacitor).
In this work, we use density functional theory calculations to demonstrate how spontaneous electric polarizations can be induced textit{via} a hybrid improper ferroelectric mechanism in iodide perovskites, a family well-known to display solar-optimal
The bandgap energy values for the ferroelectric BaTiO3-based solid solutions with isovalent substitution Ba1-x SrxTiO3, BaZrxTi1-xO3 and BaSnxTi1-xO3 were determined using diffuse reflectance spectra. While the corresponding unit cell volume follows
Based on density functional theory calculations and group theoretical analysis, we have studied NaLaMnWO$_{6}$ compound which has been recently synthesized [Phys. Rev. B 79, 224428 (2009)] and belongs to the $AABB{rm O}_{6}$ family of double perovski
Materials with formula of A2B2O7 is a famous family with more than 300 compounds, and have abundant properties, like ferroelectric, multiferroic, and photocatalyst properties, etc. Generally, two structures dominate this family, which are pyrochlore
Polarized Raman spectra of the epitaxial Ba0.5Sr0.5TiO3 film, bi-color BaTiO3/Ba0.5Sr0.5TiO3 superlattice, and tri-color BaTiO3/Ba0.5Sr0.5TiO3/SrTiO3 superlattice were studied in a broad temperature range of 80-700 K. Based on the temperature depende