ﻻ يوجد ملخص باللغة العربية
Let $bbZ_{M_1times N}=bbT^{frac{1}{2}}bbX$ where $(bbT^{frac{1}{2}})^2=bbT$ is a positive definite matrix and $bbX$ consists of independent random variables with mean zero and variance one. This paper proposes a unified matrix model $$bold{bbom}=(bbZbbU_2bbU_2^TbbZ^T)^{-1}bbZbbU_1bbU_1^TbbZ^T,$$ where $bbU_1$ and $bbU_2$ are isometric with dimensions $Ntimes N_1$ and $Ntimes (N-N_2)$ respectively such that $bbU_1^TbbU_1=bbI_{N_1}$, $bbU_2^TbbU_2=bbI_{N-N_2}$ and $bbU_1^TbbU_2=0$. Moreover, $bbU_1$ and $bbU_2$ (random or non-random) are independent of $bbZ_{M_1times N}$ and with probability tending to one, $rank(bbU_1)=N_1$ and $rank(bbU_2)=N-N_2$. We establish the asymptotic Tracy-Widom distribution for its largest eigenvalue under moment assumptions on $bbX$ when $N_1,N_2$ and $M_1$ are comparable. By selecting appropriate matrices $bbU_1$ and $bbU_2$, the asymptotic distributions of the maximum eigenvalues of the matrices used in Canonical Correlation Analysis (CCA) and of F matrices (including centered and non-center
We study the asymptotic distributions of the spiked eigenvalues and the largest nonspiked eigenvalue of the sample covariance matrix under a general covariance matrix model with divergent spiked eigenvalues, while the other eigenvalues are bounded bu
Statistical inferences for sample correlation matrices are important in high dimensional data analysis. Motivated by this, this paper establishes a new central limit theorem (CLT) for a linear spectral statistic (LSS) of high dimensional sample corre
In this article we provide some nonnegative and positive estimators of the mean squared errors(MSEs) for shrinkage estimators of multivariate normal means. Proposed estimators are shown to improve on the uniformly minimum variance unbiased estimator(
This paper examines the properties of real symmetric square matrices with a constant value for the main diagonal elements and another constant value for all off-diagonal elements. This matrix form is a simple subclass of circulant matrices, which is
The problem of reducing the bias of maximum likelihood estimator in a general multivariate elliptical regression model is considered. The model is very flexible and allows the mean vector and the dispersion matrix to have parameters in common. Many f