ﻻ يوجد ملخص باللغة العربية
This paper examines the properties of real symmetric square matrices with a constant value for the main diagonal elements and another constant value for all off-diagonal elements. This matrix form is a simple subclass of circulant matrices, which is a subclass of Toeplitz matrices. It encompasses other useful matrices such as the centering matrix and the equicorrelation matrix, which arise in statistical applications. We examine the general form of this class of matrices and derive its eigendecomposition and other important properties. We use this as a basis to look at the properties of the centering matrix and the equicorrelation matrix, and various statistics that use these matrices.
This paper considers the problem of recovery of a low-rank matrix in the situation when most of its entries are not observed and a fraction of observed entries are corrupted. The observations are noisy realizations of the sum of a low rank matrix, wh
Let $bbZ_{M_1times N}=bbT^{frac{1}{2}}bbX$ where $(bbT^{frac{1}{2}})^2=bbT$ is a positive definite matrix and $bbX$ consists of independent random variables with mean zero and variance one. This paper proposes a unified matrix model $$bold{bbom}=(bbZ
This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that ar
The consistency and asymptotic normality of the spatial sign covariance matrix with unknown location are shown. Simulations illustrate the different asymptotic behavior when using the mean and the spatial median as location estimator.
Consider estimating the n by p matrix of means of an n by p matrix of independent normally distributed observations with constant variance, where the performance of an estimator is judged using a p by p matrix quadratic error loss function. A matrix