ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved estimation in a general multivariate elliptical model

176   0   0.0 ( 0 )
 نشر من قبل Tatiane Melo
 تاريخ النشر 2015
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of reducing the bias of maximum likelihood estimator in a general multivariate elliptical regression model is considered. The model is very flexible and allows the mean vector and the dispersion matrix to have parameters in common. Many frequently used models are special cases of this general formulation, namely: errors-in-variables models, nonlinear mixed-effects models, heteroscedastic nonlinear models, among others. In any of these models, the vector of the errors may have any multivariate elliptical distribution. We obtain the second-order bias of the maximum likelihood estimator, a bias-corrected estimator, and a bias-reduced estimator. Simulation results indicate the effectiveness of the bias correction and bias reduction schemes.



قيم البحث

اقرأ أيضاً

In this paper we obtain an adjusted version of the likelihood ratio test for errors-in-variables multivariate linear regression models. The error terms are allowed to follow a multivariate distribution in the class of the elliptical distributions, wh ich has the multivariate normal distribution as a special case. We derive a modified likelihood ratio statistic that follows a chi-squared distribution with a high degree of accuracy. Our results generalize those in Melo and Ferrari(Advances in Statistical Analysis, 2010, 94, 75-87) by allowing the parameter of interest to be vector-valued in the multivariate errors-in-variables model. We report a simulation study which shows that the proposed test displays superior finite sample behavior relative to the standard likelihood ratio test.
Bayesian methods are developed for the multivariate nonparametric regression problem where the domain is taken to be a compact Riemannian manifold. In terms of the latter, the underlying geometry of the manifold induces certain symmetries on the mult ivariate nonparametric regression function. The Bayesian approach then allows one to incorporate hierarchical Bayesian methods directly into the spectral structure, thus providing a symmetry-adaptive multivariate Bayesian function estimator. One can also diffuse away some prior information in which the limiting case is a smoothing spline on the manifold. This, together with the result that the smoothing spline solution obtains the minimax rate of convergence in the multivariate nonparametric regression problem, provides good frequentist properties for the Bayes estimators. An application to astronomy is included.
148 - Mohammad Arashi 2012
In this paper, we are basically discussing on a class of Baranchik type shrinkage estimators of the vector parameter in a location model, with errors belonging to a sub-class of elliptically contoured distributions. We derive conditions under Schwart z space in which the underlying class of shrinkage estimators outperforms the sample mean. Sufficient conditions on dominant class to outperform the usual James-Stein estimator are also established. It is nicely presented that the dominant properties of the class of estimators are robust truly respect to departures from normality.
We introduce a new sufficient statistic for the population parameter vector by allowing for the sampling design to first be selected at random amongst a set of candidate sampling designs. In contrast to the traditional approach in survey sampling, we achieve this by defining the observed data to include a mention of the sampling design used for the data collection aspect of the study. We show that the reduced data consisting of the unit labels together with their corresponding responses of interest is a sufficient statistic under this setup. A Rao-Blackwellization inference procedure is outlined and it is shown how averaging over hypothetical observed data outcomes results in improved estimators; the improved strategy includes considering all possible sampling designs in the candidate set that could have given rise to the reduced data. Expressions for the variance of the Rao-Blackwell estimators are also derived. The results from two simulation studies are presented to demonstrate the practicality of our approach. A discussion on how our approach can be useful when the analyst has limited information on the data collection procedure is also provided.
74 - Sophie Donnet 2018
This paper studies nonparametric estimation of parameters of multivariate Hawkes processes. We consider the Bayesian setting and derive posterior concentration rates. First rates are derived for L1-metrics for stochastic intensities of the Hawkes pro cess. We then deduce rates for the L1-norm of interactions functions of the process. Our results are exemplified by using priors based on piecewise constant functions, with regular or random partitions and priors based on mixtures of Betas distributions. Numerical illustrations are then proposed with in mind applications for inferring functional connec-tivity graphs of neurons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا