ترغب بنشر مسار تعليمي؟ اضغط هنا

First array of enriched Zn$^{82}$Se bolometers to search for double beta decay

73   0   0.0 ( 0 )
 نشر من قبل Laura Cardani
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in $^{82}$Se, the Zn$^{82}$Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn$^{82}$Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution, background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-0.



قيم البحث

اقرأ أيضاً

The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of $^{82}$Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched $^{82}$Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3% enriched $^{82}$Se metal, measured with a high-purity germanium detector at the Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of $^{232}$Th, $^{238}$U and $^{235}$U are respectively: $<$61 $mu$Bq/kg, $< $110 $mu$Bq/kg and $<$74 $mu$Bq/kg at 90% C.L.. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the $^{82}$Se allowed us to establish the most stringent lower limits on the half-lives of double-beta decay of $^{82}$Se to 0$^+_1$, 2$^+_2$ and 2$^+_1$ excited states of $^{82}$Kr of 3.4$cdot$10$^{22}$ y, 1.3$cdot$10$^{22}$ y and 1.0$cdot$10$^{22}$ y, respectively, with a 90% C.L..
The production of ultra-pure raw material is a crucial step to ensure the required background level in rare event searches. In this work, we establish an innovative technique developed to produce high-purity (99.999%) granular zinc. We demonstrate th e effectiveness of the refining procedure by measuring the internal contaminations of the purified zinc with a high-purity germanium detector at the Laboratori Nazionali del Gran Sasso. The total activity of cosmogenic activated nuclides is measured at the level of a few mBq/kg, as well as limits on naturally occurring radionuclides are set to less than mBq/kg. The excellent radiopurity of the zinc sample allows us to search for electron capture with positron emission and neutrinoless double electron capture of $^{64}$Zn, setting the currently most stringent lower limits on their half-lives, $T_{1/2}^{varepsilonbeta^+} > 2.7 times 10^{21}text{yr}$ (90% C.I.), and $T_{1/2}^{0 u2varepsilon}> 2.6 times 10^{21}text{yr}$ (90% C.I.), respectively.
The LUMINEU project aims at performing a demonstrator underground experiment searching for the neutrinoless double beta decay of the isotope $^{100}$Mo embedded in zinc molybdate (ZnMoO$_4$) scintillating bolometers. In this context, a zinc molybdate crystal boule enriched in $^{100}$Mo to 99.5% with a mass of 171 g was grown for the first time by the low-thermal-gradient Czochralski technique. The production cycle provided a high yield (the crystal boule mass was 84% of initial charge) and an acceptable level -- around 4% -- of irrecoverable losses of the costy enriched material. Two crystals of 59 g and 63 g, obtained from the enriched boule, were tested aboveground at milli-Kelvin temperature as scintillating bolometers. They showed a high detection performance, equivalent to that of previously developed natural ZnMoO$_4$ detectors. These results pave the way to future sensitive searches based on the LUMINEU technology, capable to approach and explore the inverted hierarchy region of the neutrino mass pattern.
A cadmium tungstate crystal boule enriched in $^{116}$Cd to 82% with mass of 1868 g was grown by the low-thermal-gradient Czochralski technique. The isotopic composition of cadmium and the trace contamination of the crystal were estimated by High Res olution Inductively Coupled Plasma Mass-Spectrometry. The crystal scintillators produced from the boule were subjected to characterization that included measurements of transmittance and energy resolution. A low background scintillation detector with two $^{116}$CdWO$_4$ crystal scintillators (586 g and 589 g) was developed. The detector was running over 1727 h deep underground at the Gran Sasso National Laboratories of the INFN (Italy), which allowed to estimate the radioactive contamination of the enriched crystal scintillators. The radiopurity of a third $^{116}$CdWO$_4$ sample (326 g) was tested with the help of ultra-low background high purity germanium $gamma$ detector. Monte Carlo simulations of double $beta$ processes in $^{116}$Cd were used to estimate the sensitivity of an experiment to search for double $beta$ decay of $^{116}$Cd.
In the field of Double Beta Decay (DBD) searches the possibility to have high resolution detectors in which background can be discriminated is very appealing. This very interesting possibility can be largely fulfilled in the case of a scintillating b olometer containing a Double Beta Decay emitter whose transition energy exceeds the one of the natural gamma line of 208Tl. We present the latest results obtained in the development of such a kind of scintillating bolometer. For the first time an array of five CdWO4 (116Cd has a Double Beta Decay transition energy of 2805 keV) crystals is tested. The array consists of a plane of four 3x3x3 cm3 crystals and a second plane consisting of a single 3x3x6 cm3 crystal. This setup is mounted in hall C of the National Laboratory of Gran Sasso inside a lead shielding in order to reduce as far as possible the environmental background. The aim of this test is to demonstrate the technical feasibility of this technique through an array of detectors and perform a long background measurement in the best conditions in order to prove the achievable background in the Zero neutrino-DBD region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا