ﻻ يوجد ملخص باللغة العربية
The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of $^{82}$Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched $^{82}$Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3% enriched $^{82}$Se metal, measured with a high-purity germanium detector at the Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of $^{232}$Th, $^{238}$U and $^{235}$U are respectively: $<$61 $mu$Bq/kg, $< $110 $mu$Bq/kg and $<$74 $mu$Bq/kg at 90% C.L.. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the $^{82}$Se allowed us to establish the most stringent lower limits on the half-lives of double-beta decay of $^{82}$Se to 0$^+_1$, 2$^+_2$ and 2$^+_1$ excited states of $^{82}$Kr of 3.4$cdot$10$^{22}$ y, 1.3$cdot$10$^{22}$ y and 1.0$cdot$10$^{22}$ y, respectively, with a 90% C.L..
The observation of neutrinoless double-beta decay (0${ u}{beta}{beta}$) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inv
The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0.
CUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay ($0 ubetabeta$) of $^{100}$Mo. In this article, we detail the CUPID-Mo detector concept, assembly, installation in the underground laboratory in Modane in 2018, and prov
The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low backg
The Neutrino Experiment with a Xenon Time-Projection Chamber (NEXT) is intended to investigate the neutrinoless double beta decay of 136Xe, which requires a severe suppression of potential backgrounds; therefore, an extensive screening and selection