ﻻ يوجد ملخص باللغة العربية
Given two possible treatments, there may exist subgroups who benefit greater from one treatment than the other. This problem is relevant to the field of marketing, where treatments may correspond to different ways of selling a product. It is similarly relevant to the field of public policy, where treatments may correspond to specific government programs. And finally, personalized medicine is a field wholly devoted to understanding which subgroups of individuals will benefit from particular medical treatments. We present a computationally fast tree-based method, ABtree, for treatment effect differentiation. Unlike other methods, ABtree specifically produces decision rules for optimal treatment assignment on a per-individual basis. The treatment choices are selected for maximizing the overall occurrence of a desired binary outcome, conditional on a set of covariates. In this poster, we present the methodology on tree growth and pruning, and show performance results when applied to simulated data as well as real data.
Online A/B testing plays a critical role in the high-tech industry to guide product development and accelerate innovation. It performs a null hypothesis statistical test to determine which variant is better. However, a typical A/B test presents two p
We consider the problem of sampling from a density of the form $p(x) propto exp(-f(x)- g(x))$, where $f: mathbb{R}^d rightarrow mathbb{R}$ is a smooth and strongly convex function and $g: mathbb{R}^d rightarrow mathbb{R}$ is a convex and Lipschitz fu
Even though channel assignment has been studied for years, the performance of most IEEE 802.11-based multi-hop wireless networks such as wireless sensor network (WSN), wireless mesh network (WMN), mobile ad hoc network (MANET) is limited by channel i
This paper presents a new way of selecting an initial solution for the k-modes algorithm that allows for a notion of mathematical fairness and a leverage of the data that the common initialisations from literature do not. The method, which utilises t
The paper proposes a novel upper confidence bound (UCB) procedure for identifying the arm with the largest mean in a multi-armed bandit game in the fixed confidence setting using a small number of total samples. The procedure cannot be improved in th