ترغب بنشر مسار تعليمي؟ اضغط هنا

lil UCB : An Optimal Exploration Algorithm for Multi-Armed Bandits

235   0   0.0 ( 0 )
 نشر من قبل Kevin Jamieson
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper proposes a novel upper confidence bound (UCB) procedure for identifying the arm with the largest mean in a multi-armed bandit game in the fixed confidence setting using a small number of total samples. The procedure cannot be improved in the sense that the number of samples required to identify the best arm is within a constant factor of a lower bound based on the law of the iterated logarithm (LIL). Inspired by the LIL, we construct our confidence bounds to explicitly account for the infinite time horizon of the algorithm. In addition, by using a novel stopping time for the algorithm we avoid a union bound over the arms that has been observed in other UCB-type algorithms. We prove that the algorithm is optimal up to constants and also show through simulations that it provides superior performance with respect to the state-of-the-art.



قيم البحث

اقرأ أيضاً

We study the best-arm identification problem in multi-armed bandits with stochastic, potentially private rewards, when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a (non-private) successiv e elimination algorithm for strictly optimal best-arm identification, we show that our algorithm is $delta$-PAC and we characterize its sample complexity. Further, we provide a lower bound on the expected number of pulls, showing that the proposed algorithm is essentially optimal up to logarithmic factors. Both upper and lower complexity bounds depend on a special definition of the associated suboptimality gap, designed in particular for the quantile bandit problem, as we show when the gap approaches zero, best-arm identification is impossible. Second, motivated by applications where the rewards are private, we provide a differentially private successive elimination algorithm whose sample complexity is finite even for distributions with infinite support-size, and we characterize its sample complexity. Our algorithms do not require prior knowledge of either the suboptimality gap or other statistical information related to the bandit problem at hand.
Identifying the best arm of a multi-armed bandit is a central problem in bandit optimization. We study a quantum computational version of this problem with coherent oracle access to states encoding the reward probabilities of each arm as quantum ampl itudes. Specifically, we show that we can find the best arm with fixed confidence using $tilde{O}bigl(sqrt{sum_{i=2}^nDelta^{smash{-2}}_i}bigr)$ quantum queries, where $Delta_{i}$ represents the difference between the mean reward of the best arm and the $i^text{th}$-best arm. This algorithm, based on variable-time amplitude amplification and estimation, gives a quadratic speedup compared to the best possible classical result. We also prove a matching quantum lower bound (up to poly-logarithmic factors).
64 - Lilian Besson 2018
An online reinforcement learning algorithm is anytime if it does not need to know in advance the horizon T of the experiment. A well-known technique to obtain an anytime algorithm from any non-anytime algorithm is the Doubling Trick. In the context o f adversarial or stochastic multi-armed bandits, the performance of an algorithm is measured by its regret, and we study two families of sequences of growing horizons (geometric and exponential) to generalize previously known results that certain doubling tricks can be used to conserve certain regret bounds. In a broad setting, we prove that a geometric doubling trick can be used to conserve (minimax) bounds in $R_T = O(sqrt{T})$ but cannot conserve (distribution-dependent) bounds in $R_T = O(log T)$. We give insights as to why exponential doubling tricks may be better, as they conserve bounds in $R_T = O(log T)$, and are close to conserving bounds in $R_T = O(sqrt{T})$.
We consider nonstationary multi-armed bandit problems where the model parameters of the arms change over time. We introduce the adaptive resetting bandit (ADR-bandit), which is a class of bandit algorithms that leverages adaptive windowing techniques from the data stream community. We first provide new guarantees on the quality of estimators resulting from adaptive windowing techniques, which are of independent interest in the data mining community. Furthermore, we conduct a finite-time analysis of ADR-bandit in two typical environments: an abrupt environment where changes occur instantaneously and a gradual environment where changes occur progressively. We demonstrate that ADR-bandit has nearly optimal performance when the abrupt or global changes occur in a coordinated manner that we call global changes. We demonstrate that forced exploration is unnecessary when we restrict the interest to the global changes. Unlike the existing nonstationary bandit algorithms, ADR-bandit has optimal performance in stationary environments as well as nonstationary environments with global changes. Our experiments show that the proposed algorithms outperform the existing approaches in synthetic and real-world environments.
We consider the best-arm identification problem in multi-armed bandits, which focuses purely on exploration. A player is given a fixed budget to explore a finite set of arms, and the rewards of each arm are drawn independently from a fixed, unknown d istribution. The player aims to identify the arm with the largest expected reward. We propose a general framework to unify sequential elimination algorithms, where the arms are dismissed iteratively until a unique arm is left. Our analysis reveals a novel performance measure expressed in terms of the sampling mechanism and number of eliminated arms at each round. Based on this result, we develop an algorithm that divides the budget according to a nonlinear function of remaining arms at each round. We provide theoretical guarantees for the algorithm, characterizing the suitable nonlinearity for different problem environments described by the number of competitive arms. Matching the theoretical results, our experiments show that the nonlinear algorithm outperforms the state-of-the-art. We finally study the side-observation model, where pulling an arm reveals the rewards of its related arms, and we establish improved theoretical guarantees in the pure-exploration setting.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا