ﻻ يوجد ملخص باللغة العربية
This paper presents a new way of selecting an initial solution for the k-modes algorithm that allows for a notion of mathematical fairness and a leverage of the data that the common initialisations from literature do not. The method, which utilises the Hospital-Resident Assignment Problem to find the set of initial cluster centroids, is compared with the current initialisations on both benchmark datasets and a body of newly generated artificial datasets. Based on this analysis, the proposed method is shown to outperform the other initialisations in the majority of cases, especially when the number of clusters is optimised. In addition, we find that our method outperforms the leading established method specifically for low-density data.
Enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum game with the problem of data clustering, and then develop a quantum-game-based clustering algorithm, in which data points in a data
We study finite-armed stochastic bandits where the rewards of each arm might be correlated to those of other arms. We introduce a novel phased algorithm that exploits the given structure to build confidence sets over the parameters of the true bandit
The enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum random walk (QRW) with the problem of data clustering, and develop two clustering algorithms based on the one dimensional QRW. T
We introduce a modified model of random walk, and then develop two novel clustering algorithms based on it. In the algorithms, each data point in a dataset is considered as a particle which can move at random in space according to the preset rules in
We present a simple heuristic algorithm for efficiently optimizing the notoriously hard minimum sum-of-squares clustering problem, usually addressed by the classical k-means heuristic and its variants. The algorithm, called recombinator-k-means, is v