ﻻ يوجد ملخص باللغة العربية
In an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 $mu$eV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.
Searches for dark matter axion involve the use of microwave resonant cavities operating in a strong magnetic field. Detector sensitivity is directly related to the cavity quality factor, which is limited, however, by the presence of the external magn
We demonstrate a superconducting (SC) microwave (mw) cavity that can accelerate the dark matter search by maintaining superconductivity in a high DC magnetic field. We used high-temperature superconductor (HTSC) yttrium barium copper oxide (YBCO) wit
The past few years have seen a renewed interest in the search for light particle dark matter. ABRACADABRA is a new experimental program to search for axion dark matter over a broad range of masses, $10^{-12}lesssim m_alesssim10^{-6}$ eV. ABRACADABRA-
Dedicated spectrometers for terahertz radiation with [0.3, 30] THz frequencies using traditional optomechanical interferometry are substantially less common than their infrared and microwave counterparts. This paper presents the design and initial pe
Axion-like particles (ALPs) are pseudo-scalar particles that are candidates for ultralight dark matter. ALPs interact with photons slightly and cause the rotational oscillation of linear polarization. DANCE searches for ALP dark matter by enhancing t