ﻻ يوجد ملخص باللغة العربية
Dedicated spectrometers for terahertz radiation with [0.3, 30] THz frequencies using traditional optomechanical interferometry are substantially less common than their infrared and microwave counterparts. This paper presents the design and initial performance measurements of a tabletop Fourier transform spectrometer (FTS) for multi-terahertz radiation using infrared optics in a Michelson arrangement. This is coupled to a broadband pyroelectric photodetector designed for [0.1, 30] THz frequencies. We measure spectra of narrowband and broadband input radiation to characterize the performance of this instrument above 10 THz, where signal-to-noise is high. This paves the groundwork for planned upgrades to extend below 10 THz. We also briefly discuss potential astroparticle physics applications of such FTS instruments to broadband axion dark matter searches, whose signature comprises low-rate monochromatic photons with unknown frequency.
The past few years have seen a renewed interest in the search for light particle dark matter. ABRACADABRA is a new experimental program to search for axion dark matter over a broad range of masses, $10^{-12}lesssim m_alesssim10^{-6}$ eV. ABRACADABRA-
Germanium ionization detectors with sensitivities as low as 100 eVee (electron-equivalent energy) open new windows for studies on neutrino and dark matter physics. The relevant physics subjects are summarized. The detectors have to measure physics si
In an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 $mu$eV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating van
The sensitivity of experimental searches for axion dark matter coupled to photons is typically proportional to the strength of the applied static magnetic field. We demonstrate how a permeable material can be used to enhance the magnitude of this sta
The axion, a consequence of the PQ mechanism, has been considered as the most elegant solution to the strong-CP problem and a compelling candidate for cold dark matter. The Center for Axion and Precision Physics Research (CAPP) of the Institute for B