ﻻ يوجد ملخص باللغة العربية
Axion-like particles (ALPs) are pseudo-scalar particles that are candidates for ultralight dark matter. ALPs interact with photons slightly and cause the rotational oscillation of linear polarization. DANCE searches for ALP dark matter by enhancing the rotational oscillation in a bow-tie ring cavity. The signal to noise ratio of DANCE can be improved by long-term observation, and we are planning a year-long observation for the final DANCE. In this document, I will report on the control systems of the ring cavity we developed for the future long-term observation.
The DAMIC experiment uses fully depleted, high resistivity CCDs to search for dark matter particles. With an energy threshold $sim$50 eV$_{ee}$, and excellent energy and spatial resolutions, the DAMIC CCDs are well-suited to identify and suppress rad
The sensitivity of experimental searches for axion dark matter coupled to photons is typically proportional to the strength of the applied static magnetic field. We demonstrate how a permeable material can be used to enhance the magnitude of this sta
The highly radiopure NaI(Tl) was developed to search for particle candidates of dark matter. The optimized methods were combined to reduce various radioactive impurities. The $^{40}$K was effectively reduced by the re-crystallization method. The prog
This Letter reports results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 $mu$eV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sens
MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This Letter of Intent presents the MeV-GeV DM discovery potential for a 1 m$^3$ segmented plastic scintillator detector placed downstream of the beam-dump at one of t