ﻻ يوجد ملخص باللغة العربية
The equivalence between theories depending on the derivatives of $R$, i.e. $fleft( R, abla R,..., abla^{n}Rright) $, and scalar-multi-tensorial theories is verified. The analysis is done in both metric and Palatini formalisms. It is shown that $fleft( R, abla R,..., abla^{n}Rright) $ theories are equivalent to scalar-multi-tensorial ones resembling Brans-Dicke theories with kinetic terms $omega_{0}=0$ and $omega_{0}= - frac{3}{2}$ for metric and Palatini formalisms respectively. This result is analogous to what happens for $f(R)$ theories. It is worthy emphasizing that the scalar-multi-tensorial theories obtained here differ from Brans-Dicke ones due to the presence of multiple tensorial fields absent in the last. Furthermore, sufficient conditions are established for $fleft( R, abla R,..., abla^{n}Rright) $ theories to be written as scalar-multi-tensorial theories. Finally, some examples are studied and the comparison of $fleft( R, abla R,..., abla^{n}Rright) $ theories to $fleft( R,Box R,...Box^{n}Rright) $ theories is performed.
In Cuzinatto et al. [Phys. Rev. D 93, 124034 (2016)], it has been demonstrated that theories of gravity in which the Lagrangian includes terms depending on the scalar curvature $R$ and its derivatives up to order $n$, i.e. $fleft(R, abla_{mu}R, abla_
In literature there is a model of modified gravity in which the matter Lagrangian is coupled to the geometry via trace of the stress-energy momentum tensor $T=T_{mu}^{mu}$. This type of modified gravity is called as $f(R,T)$ in which $R$ is Ricci sca
This paper analyses the cosmological consequences of a modified theory of gravity whose action integral is built from a linear combination of the Ricci scalar $R$ and a quadratic term in the covariant derivative of $R$. The resulting Friedmann equati
We introduce a computationally tractable way to describe the $mathbb Z$-homotopy fixed points of a $C_{n}$-spectrum $E$, producing a genuine $C_{n}$ spectrum $E^{hnmathbb Z}$ whose fixed and homotopy fixed points agree and are the $mathbb Z$-homotopy
In this work we study a modified version of vacuum $f(R)$ gravity with a kinetic term which consists of the first derivatives of the Ricci scalar. We develop the general formalism of this kinetic Ricci modified $f(R)$ gravity and we emphasize on cosm