ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalar-multi-tensorial equivalence for higher order $fleft( R, abla_{mu} R, abla_{mu_{1}} abla_{mu_{2}}R,..., abla_{mu_{1}}... abla_{mu_{n} }Rright)$ theories of gravity

104   0   0.0 ( 0 )
 نشر من قبل Leo Medeiros Gouvea
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The equivalence between theories depending on the derivatives of $R$, i.e. $fleft( R, abla R,..., abla^{n}Rright) $, and scalar-multi-tensorial theories is verified. The analysis is done in both metric and Palatini formalisms. It is shown that $fleft( R, abla R,..., abla^{n}Rright) $ theories are equivalent to scalar-multi-tensorial ones resembling Brans-Dicke theories with kinetic terms $omega_{0}=0$ and $omega_{0}= - frac{3}{2}$ for metric and Palatini formalisms respectively. This result is analogous to what happens for $f(R)$ theories. It is worthy emphasizing that the scalar-multi-tensorial theories obtained here differ from Brans-Dicke ones due to the presence of multiple tensorial fields absent in the last. Furthermore, sufficient conditions are established for $fleft( R, abla R,..., abla^{n}Rright) $ theories to be written as scalar-multi-tensorial theories. Finally, some examples are studied and the comparison of $fleft( R, abla R,..., abla^{n}Rright) $ theories to $fleft( R,Box R,...Box^{n}Rright) $ theories is performed.



قيم البحث

اقرأ أيضاً

In Cuzinatto et al. [Phys. Rev. D 93, 124034 (2016)], it has been demonstrated that theories of gravity in which the Lagrangian includes terms depending on the scalar curvature $R$ and its derivatives up to order $n$, i.e. $fleft(R, abla_{mu}R, abla_ {mu_{1}} abla_{mu_{2}}R,dots, abla_{mu_{1}}dots abla_{mu_{n}}Rright)$ theories of gravity, are equivalent to scalar-multitensorial theories in the Jordan frame. In particular, in the metric and Palatini formalisms, this scalar-multitensorial equivalent scenario shows a structure that resembles that of the Brans-Dicke theories with a kinetic term for the scalar field with $omega_{0}=0$ or $omega_{0}=-3/2$, respectively. In the present work, the aforementioned analysis is extended to the Einstein frame. The conformal transformation of the metric characterizing the transformation from Jordans to Einsteins frame is responsible for decoupling the scalar field from the scalar curvature and also for introducing a usual kinetic term for the scalar field in the metric formalism. In the Palatini approach, this kinetic term is absent in the action. Concerning the other tensorial auxiliary fields, they appear in the theory through a generalized potential. As an example, the analysis of an extension of the Starobinsky model (with an extra term proportional to $ abla_{mu}R abla^{mu}R$) is performed and the fluid representation for the energy-momentum tensor is considered. In the metric formalism, the presence of the extra term causes the fluid to be an imperfect fluid with a heat flux contribution; on the other hand, in the Palatini formalism the effective energy-momentum tensor for the extended Starobinsky gravity is that of a perfect fluid type. Finally, it is also shown that the extra term in the Palatini formalism represents a dynamical field which is able to generate an inflationary regime without a graceful exit.
In literature there is a model of modified gravity in which the matter Lagrangian is coupled to the geometry via trace of the stress-energy momentum tensor $T=T_{mu}^{mu}$. This type of modified gravity is called as $f(R,T)$ in which $R$ is Ricci sca lar $R=R_{mu}^{mu}$. We extend manifestly this model to include the higher derivative term $Box R$. We derived equation of motion (EOM) for the model by starting from the basic variational principle. Later we investigate FLRW cosmology for our model. We show that de Sitter solution is unstable for a generic type of $f(R,Box R, T)$ model. Furthermore we investigate an inflationary scenario based on this model. A graceful exit from inflation is guaranteed in this type of modified gravity.
This paper analyses the cosmological consequences of a modified theory of gravity whose action integral is built from a linear combination of the Ricci scalar $R$ and a quadratic term in the covariant derivative of $R$. The resulting Friedmann equati ons are of the fifth-order in the Hubble function. These equations are solved numerically for a flat space section geometry and pressureless matter. The cosmological parameters of the higher-order model are fit using SN Ia data and X-ray gas mass fraction in galaxy clusters. The best-fit present-day $t_{0}$ values for the deceleration parameter, jerk and snap are given. The coupling constant $beta$ of the model is not univocally determined by the data fit, but partially constrained by it. Density parameter $Omega_{m0}$ is also determined and shows weak correlation with the other parameters. The model allows for two possible future scenarios: there may be either a premature Big Rip or a Rebouncing event depending on the set of values in the space of parameters. The analysis towards the past performed with the best-fit parameters shows that the model is not able to accommodate a matter-dominated stage required to the formation of structure.
We introduce a computationally tractable way to describe the $mathbb Z$-homotopy fixed points of a $C_{n}$-spectrum $E$, producing a genuine $C_{n}$ spectrum $E^{hnmathbb Z}$ whose fixed and homotopy fixed points agree and are the $mathbb Z$-homotopy fixed points of $E$. These form a piece of a contravariant functor from the divisor poset of $n$ to genuine $C_{n}$-spectra, and when $E$ is an $N_{infty}$-ring spectrum, this functor lifts to a functor of $N_{infty}$-ring spectra. For spectra like the Real Johnson--Wilson theories or the norms of Real bordism, the slice spectral sequence provides a way to easily compute the $RO(G)$-graded homotopy groups of the spectrum $E^{hnmathbb Z}$, giving the homotopy groups of the $mathbb Z$-homotopy fixed points. For the more general spectra in the contravariant functor, the slice spectral sequences interpolate between the one for the norm of Real bordism and the especially simple $mathbb Z$-homotopy fixed point case, giving us a family of new tools to simplify slice computations.
In this work we study a modified version of vacuum $f(R)$ gravity with a kinetic term which consists of the first derivatives of the Ricci scalar. We develop the general formalism of this kinetic Ricci modified $f(R)$ gravity and we emphasize on cosm ological applications for a spatially flat cosmological background. By using the formalism of this theory, we investigate how it is possible to realize various cosmological scenarios. Also we demonstrate that this theoretical framework can be treated as a reconstruction method, in the context of which it is possible to realize various exotic cosmologies for ordinary Einstein-Hilbert action. Finally, we derive the scalar-tensor counterpart theory of this kinetic Ricci modified $f(R)$ gravity, and we show the mathematical equivalence of the two theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا