ﻻ يوجد ملخص باللغة العربية
In literature there is a model of modified gravity in which the matter Lagrangian is coupled to the geometry via trace of the stress-energy momentum tensor $T=T_{mu}^{mu}$. This type of modified gravity is called as $f(R,T)$ in which $R$ is Ricci scalar $R=R_{mu}^{mu}$. We extend manifestly this model to include the higher derivative term $Box R$. We derived equation of motion (EOM) for the model by starting from the basic variational principle. Later we investigate FLRW cosmology for our model. We show that de Sitter solution is unstable for a generic type of $f(R,Box R, T)$ model. Furthermore we investigate an inflationary scenario based on this model. A graceful exit from inflation is guaranteed in this type of modified gravity.
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor an
Using dynamical system analysis, we explore the cosmology of theories of order up to eight order of the form $f(R, Box R)$. The phase space of these cosmology reveals that higher-order terms can have a dramatic influence on the evolution of the cosmo
Taking advantage of the conformal equivalence of f(R) theories of gravity with General Relativity coupled to a scalar field we generalize the Israel junction conditions for this class of theories by direct integration of the field equations. We sugge
A complete analysis of the dynamics of the Hu-Sawicki modification to General Relativity is presented. In particular, the full phase-space is given for the case in which the model parameters are taken to be n=1, c1=1, and several stable de Sitter equ
In $f(R)$ gravity and Brans-Dicke theory with scalar potentials, we study the structure of neutron stars on a spherically symmetric and static background for two equations of state: SLy and FPS. In massless BD theory, the presence of a scalar couplin