ﻻ يوجد ملخص باللغة العربية
In Cuzinatto et al. [Phys. Rev. D 93, 124034 (2016)], it has been demonstrated that theories of gravity in which the Lagrangian includes terms depending on the scalar curvature $R$ and its derivatives up to order $n$, i.e. $fleft(R, abla_{mu}R, abla_{mu_{1}} abla_{mu_{2}}R,dots, abla_{mu_{1}}dots abla_{mu_{n}}Rright)$ theories of gravity, are equivalent to scalar-multitensorial theories in the Jordan frame. In particular, in the metric and Palatini formalisms, this scalar-multitensorial equivalent scenario shows a structure that resembles that of the Brans-Dicke theories with a kinetic term for the scalar field with $omega_{0}=0$ or $omega_{0}=-3/2$, respectively. In the present work, the aforementioned analysis is extended to the Einstein frame. The conformal transformation of the metric characterizing the transformation from Jordans to Einsteins frame is responsible for decoupling the scalar field from the scalar curvature and also for introducing a usual kinetic term for the scalar field in the metric formalism. In the Palatini approach, this kinetic term is absent in the action. Concerning the other tensorial auxiliary fields, they appear in the theory through a generalized potential. As an example, the analysis of an extension of the Starobinsky model (with an extra term proportional to $ abla_{mu}R abla^{mu}R$) is performed and the fluid representation for the energy-momentum tensor is considered. In the metric formalism, the presence of the extra term causes the fluid to be an imperfect fluid with a heat flux contribution; on the other hand, in the Palatini formalism the effective energy-momentum tensor for the extended Starobinsky gravity is that of a perfect fluid type. Finally, it is also shown that the extra term in the Palatini formalism represents a dynamical field which is able to generate an inflationary regime without a graceful exit.
The equivalence between theories depending on the derivatives of $R$, i.e. $fleft( R, abla R,..., abla^{n}Rright) $, and scalar-multi-tensorial theories is verified. The analysis is done in both metric and Palatini formalisms. It is shown that $fleft
An extension of the Starobinsky model is proposed. Besides the usual Starobinsky Lagrangian, a term proportional to the derivative of the scalar curvature, $ abla_{mu}R abla^{mu}R$, is considered. The analyzis is done in the Einstein frame with the i
This paper analyses the cosmological consequences of a modified theory of gravity whose action integral is built from a linear combination of the Ricci scalar $R$ and a quadratic term in the covariant derivative of $R$. The resulting Friedmann equati
Slow-roll inflation is analyzed in the context of modified gravity within the Palatini formalism. As shown in the literature, inflation in this framework requires the presence of non-traceless matter, otherwise it does not occur just as a consequence
We show that in the weak field limit the light deflection alone cannot distinguish between different $R + F[g(square)R]$ models of gravity, where $F$ and $g$ are arbitrary functions. This does not imply, however, that in all these theories an observe