ﻻ يوجد ملخص باللغة العربية
The concatenated Greenberger-Horne-Zeiglinger (C-GHZ) state which is a new type of logic-qubit entanglement has attracted a lot of attentions recently. We present a feasible entanglement concentration protocol (ECP) for logic-qubit entanglement. This ECP is based on the linear optics, and it does not know the initial coefficients of the less-entangled C-GHZ state. This protocol can be extended to arbitrary C-GHZ state. This protocol may be useful in future quantum information processing tasks.
The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled st
The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state has great potential application in the future quantum network, for it is robust to the decoherence in a noisy environment. In the paper, we propose a complete C-GHZ state analysis protocol wi
We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are
We introduce a class of multi-particle Greenberger-Horne-Zeilinger (GHZ) states, and study entanglement swapping between two qubit systems for Bell states and for the class of GHZ states, respectively. We generalize the bi-system entanglement swappin
The multipartite Greenberger-Horne-Zeilinger (GHZ) states are indispensable elements for various quantum information processing tasks. Here we put forward two deterministic proposals to dissipatively prepare tripartite GHZ states in a neutral atom sy