ﻻ يوجد ملخص باللغة العربية
The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state has great potential application in the future quantum network, for it is robust to the decoherence in a noisy environment. In the paper, we propose a complete C-GHZ state analysis protocol with the help of some auxiliary single atoms trapped in the low-quality cavities. In the protocol, we essentially make the parity check for the photonic states based on the photonic Faraday rotation effect, and complete the analysis task combined with the Hadamard operation and single qubit measurement. The success probability of our protocol can reach 100% in principle, and the number of physical qubit encoded in each logic qubit does not affect the analysis. Our analysis protocol may have its practical application in future long-distance quantum communication.
The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled st
The concatenated Greenberger-Horne-Zeiglinger (C-GHZ) state which is a new type of logic-qubit entanglement has attracted a lot of attentions recently. We present a feasible entanglement concentration protocol (ECP) for logic-qubit entanglement. This
The Greenberger-Horne-Zeilinger (GHZ) argument against noncontextual local hidden variables is recast in quantum logical terms of fundamental propositions and probabilities. Unlike Kochen-Specker- and Hardy-like configurations, this operator based ar
The multipartite Greenberger-Horne-Zeilinger (GHZ) states are indispensable elements for various quantum information processing tasks. Here we put forward two deterministic proposals to dissipatively prepare tripartite GHZ states in a neutral atom sy
It has been demonstrated that the optimal sensitivity achievable with Greenberger-Horne-Zeilinger states is the same as that with uncorrelated probes in the frequency estimation in the presence of uncorrelated Markovian dephasing [S. F. Huelga, et al