ﻻ يوجد ملخص باللغة العربية
The multipartite Greenberger-Horne-Zeilinger (GHZ) states are indispensable elements for various quantum information processing tasks. Here we put forward two deterministic proposals to dissipatively prepare tripartite GHZ states in a neutral atom system. The first scheme can be considered as an extension of a recent work [T. M. Wintermantel, Y. Wang, G. Lochead, textit{et al}, {Phys. Rev. Lett. textbf{124}, 070503 (2020)}]. By virtue of the polychromatic driving fields and the engineered spontaneous emission, a multipartite GHZ state with odd numbers of atoms are generated with a high efficiency. This scheme effectively overcomes the problem of dependence on the initial state but sensitive to the decay of Rydberg state. In the second scenario, we exploit the spontaneous emission of the Rydberg states as a resource, thence a steady tripartite GHZ state with fidelity around $98%$ can be obtained by simultaneously integrating the switching driving of unconventional Rydberg pumping and the Rydberg antiblockade effect.
The Greenberger-Horne-Zeilinger (GHZ) argument against noncontextual local hidden variables is recast in quantum logical terms of fundamental propositions and probabilities. Unlike Kochen-Specker- and Hardy-like configurations, this operator based ar
As one of the most intriguing features of quantum mechanics, Einstein-Podolsky-Rosen (EPR) steering is a useful resource for secure quantum networks. Greenberger-Horne-Zeilinger (GHZ) state plays important role in quantum communication network. By re
In all local realistic theories worked out till now, locality is considered as a basic assumption. Most people in the field consider the inconsistency between local realistic theories and quantum mechanics to be a result of non-local nature of quantu
We propose a probabilistic quantum cloning scheme using Greenberger-Horne-Zeilinger states, Bell basis measurements, single-qubit unitary operations and generalized measurements, all of which are within the reach of current technology. Compared to an
The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state has great potential application in the future quantum network, for it is robust to the decoherence in a noisy environment. In the paper, we propose a complete C-GHZ state analysis protocol wi