ﻻ يوجد ملخص باللغة العربية
We consider the isotropic perimeter generating functions of three-choice, imperfect, and 1-punctured staircase polygons, whose 8th order linear Fuchsian ODEs are previously known. We derive simple relationships between the three generating functions, and show that all three generating functions are joint solutions of a common 12th order Fuchsian linear ODE. We find that the 8th order differential operators can each be rewritten as a direct sum of a direct product, with operators no larger than 3rd order. We give closed-form expressions for all the solutions of these operators in terms of $_2F_1$ hypergeometric functions with rational and algebraic arguments. The solutions of these linear differential operators can in fact be expressed in terms of two modular forms, since these $_2F_1$ hypergeometric functions can be expressed with two, rational or algebraic, pullbacks.
A directed path in the vicinity of a hard wall exerts pressure on the wall because of loss of entropy. The pressure at a particular point may be estimated by estimating the loss of entropy if the point is excluded from the path. In this paper we dete
Generating functions for Clebsch-Gordan coefficients of osp(1|2) are derived. These coefficients are expressed as q goes to - 1 limits of the dual q-Hahn polynomials. The generating functions are obtained using two different approaches respectively b
We provide exact and approximation methods for solving a geometric relaxation of the Traveling Salesman Problem (TSP) that occurs in curve reconstruction: for a given set of vertices in the plane, the problem Minimum Perimeter Polygon (MPP) asks for
We consider the product of n complex non-Hermitian, independent random matrices, each of size NxN with independent identically distributed Gaussian entries (Ginibre matrices). The joint probability distribution of the complex eigenvalues of the produ
We consider a system of anisotropic plates in the three-dimensional continuum, interacting via purely hard core interactions. We assume that the particles have a finite number of allowed orientations. In a suitable range of densities, we prove the ex