ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal microscopic correlation functions for products of independent Ginibre matrices

184   0   0.0 ( 0 )
 نشر من قبل Gernot Akemann
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the product of n complex non-Hermitian, independent random matrices, each of size NxN with independent identically distributed Gaussian entries (Ginibre matrices). The joint probability distribution of the complex eigenvalues of the product matrix is found to be given by a determinantal point process as in the case of a single Ginibre matrix, but with a more complicated weight given by a Meijer G-function depending on n. Using the method of orthogonal polynomials we compute all eigenvalue density correlation functions exactly for finite N and fixed n. They are given by the determinant of the corresponding kernel which we construct explicitly. In the large-N limit at fixed n we first determine the microscopic correlation functions in the bulk and at the edge of the spectrum. After unfolding they are identical to that of the Ginibre ensemble with n=1 and thus universal. In contrast the microscopic correlations we find at the origin differ for each n>1 and generalise the known Bessel-law in the complex plane for n=2 to a new hypergeometric kernel 0_F_n-1.



قيم البحث

اقرأ أيضاً

In this paper, we study the product of two complex Ginibre matrices and the loop equations satisfied by their resolvents (i.e. the Stieltjes transform of the correlation functions). We obtain using Schwinger-Dyson equation (SDE) techniques the genera l loop equations satisfied by the resolvents. In order to deal with the product structure of the random matrix of interest, we consider SDEs involving the integral of higher derivatives. One of the advantage of this technique is that it bypasses the reformulation of the problem in terms of singular values. As a byproduct of this study we obtain the large $N$ limit of the Stieltjes transform of the $2$-point correlation function, as well as the first correction to the Stieltjes transform of the density, giving us access to corrections to the smoothed density. In order to pave the way for the establishment of a topological recursion formula we also study the geometry of the corresponding spectral curve. This paper also contains explicit results for different resolvents and their corrections.
140 - J. R. Ipsen , M. Kieburg 2013
We study the joint probability density of the eigenvalues of a product of rectangular real, complex or quaternion random matrices in a unified way. The random matrices are distributed according to arbitrary probability densities, whose only restricti on is the invariance under left and right multiplication by orthogonal, unitary or unitary symplectic matrices, respectively. We show that a product of rectangular matrices is statistically equivalent to a product of square matrices. Hereby we prove a weak commutation relation of the random matrices at finite matrix sizes, which previously have been discussed for infinite matrix size. Moreover we derive the joint probability densities of the eigenvalues. To illustrate our results we apply them to a product of random matrices drawn from Ginibre ensembles and Jacobi ensembles as well as a mixed version thereof. For these weights we show that the product of complex random matrices yield a determinantal point process, while the real and quaternion matrix ensembles correspond to Pfaffian point processes. Our results are visualized by numerical simulations. Furthermore, we present an application to a transport on a closed, disordered chain coupled to a particle bath.
In [math-ph/0107005] we have proven that the generating function for self-avoiding branched polymers in D+2 continuum dimensions is proportional to the pressure of the hard-core continuum gas at negative activity in D dimensions. This result explains why the critical behavior of branched polymers should be the same as that of the $i phi^3$ (or Yang-Lee edge) field theory in two fewer dimensions (as proposed by Parisi and Sourlas in 1981). - In this article we review and generalize the results of [math-ph/0107005]. We show that the generating functions for several branched polymers are proportional to correlation functions of the hard-core gas. We derive Ward identities for certain branched polymer correlations. We give reduction formulae for multi-species branched polymers and the corresponding repulsive gases. Finally, we derive the massive scaling limit for the 2-point function of the one-dimensional hard-core gas, and thereby obtain the scaling form of the 2-point function for branched polymers in three dimensions.
182 - Patrik L. Ferrari 2013
In these lecture we explain why limiting distribution function, like the Tracy-Widom distribution, or limit processes, like the Airy_2 process, arise both in random matrices and interacting particle systems. The link is through a common mathematical structure on an interlacing structure, also known as Gelfand-Tsetlin pattern, that appears for specific models in both fields.
184 - Joel L. Lebowitz 2021
This article is mostly based on a talk I gave at the March 2021 meeting (virtual) of the American Physical Society on the occasion of receiving the Dannie Heineman prize for Mathematical Physics from the American Institute of Physics and the American Physical Society. I am greatly indebted to many colleagues for the results leading to this award. To name them all would take up all the space allotted to this article. (I have had more than 200 collaborators so far), I will therefore mention just a few: Michael Aizenman, Bernard Derrida, Shelly Goldstein, Elliott Lieb, Oliver Penrose, Errico Presutti, Gene Speer and Herbert Spohn. I am grateful to all of my collaborators, listed and unlisted. I would also like to acknowledge here long time support form the AFOSR and the NSF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا