ﻻ يوجد ملخص باللغة العربية
The existence of incompatible measurements is often believed to be a feature of quantum theory which signals its inconsistency with any classical worldview. To prove the failure of classicality in the sense of Kochen-Specker noncontextuality, one does indeed require sets of incompatible measurements. However, a more broadly applicable and more permissive notion of classicality is the existence of a generalized-noncontextual ontological model. In particular, this notion can imply constraints on the representation of outcomes even within a single nonprojective measurement. We leverage this fact to demonstrate that measurement incompatibility is neither necessary nor sufficient for proofs of the failure of generalized noncontextuality. Furthermore, we show that every proof of the failure of generalized noncontextuality in a prepare-measure scenario can be converted into a proof of the failure of generalized noncontextuality in a corresponding scenario with no incompatible measurements.
Our aim is to compare the fundamental notions of quantum physics - contextuality vs. incompatibility. One has to distinguish two different notions of contextuality, {it Bohr-contextuality} and {it Bell-contextuality}. The latter is defined operationa
Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Be
A central result in the foundations of quantum mechanics is the Kochen-Specker theorem. In short, it states that quantum mechanics is in conflict with classical models in which the result of a measurement does not depend on which other compatible mea
We propose a new measure of relative incompatibility for a quantum system with respect to two non-commuting observables, and call it quantumness of relative incompatibility. In case of a classical state, order of observation is inconsequential, hence
One of the basic distinctions between classical and quantum mechanics is the existence of fundamentally incompatible quantities. Such quantities are present on all levels of quantum objects: states, measurements, quantum channels, and even higher ord