ﻻ يوجد ملخص باللغة العربية
KH2PO4 (KDP) belongs to the class of hydrogen-bonded ferroelectrics, whose paraelectric to ferroelectric phase transition is driven by the ordering of the protons in the hydrogen bonds. We demonstrate that forbidden reflections of KDP, when measured at an x-ray absorption edge, are highly sensitive to the asymmetry of proton configurations. The change of average symmetry caused by the freezing of the protons during the phase transition is clearly evidenced. In the paraelectric phase, we identify in the resonant spectra of the forbidden reflections a contribution related to the transient proton configurations in the hydrogen bonds, which violates the high average symmetry of the sites of the resonant atoms. The analysis of the temperature dependence reveals a change of relative probabilities of the different proton configurations. They follow the Arrhenius law, and the activation energies of polar and Slater configurations are 18.6 and 7.3 meV, respectively.
By means of circularly polarized x-ray beam at Dy L3 and Fe K absorption edges, the chiral structure of the electric quadrupole was investigated for a single crystal of DyFe3(BO3)4 in which both Dy and Fe ions are arranged in spiral manners. The inte
Magnetic spiral structures can exhibit ferroelectric moments as recently demonstrated in various multiferroic materials. In such cases the helicity of the magnetic spiral is directly correlated with the direction of the ferroelectric moment and measu
Resonant magnetic x-ray diffraction experiments were carried out on the stacked triangular lattice antiferromagnet GdPd2Al3. The experiments revealed an expected initial collinear c-axis order at TN1 followed by an additional in-plane order at TN2, w
Self-assembled monolayers of 1,3,5-tris(4-biphenyl-4-carbonitrile)benzene, a large functional trinitrile molecule, on the (111) surfaces of copper and silver under ultrahigh vacuum conditions were studied by scanning tunneling microscopy and low-ener
Field-dependent magnetic structure of a layered Dirac material EuMnBi$_2$ was investigated in detail by the single crystal neutron diffraction and the resonant x-ray magnetic diffraction techniques. On the basis of the reflection conditions in the an