ﻻ يوجد ملخص باللغة العربية
Accelerated destructive degradation tests (ADDT) are widely used in industry to evaluate materials long term properties. Even though there has been tremendous statistical research in nonparametric methods, the current industrial practice is still to use application-specific parametric models to describe ADDT data. The challenge of using a nonparametric approach comes from the need to retain the physical meaning of degradation mechanisms and also perform extrapolation for predictions at the use condition. Motivated by this challenge, we propose a semi-parametric model to describe ADDT data. We use monotonic B-splines to model the degradation path, which not only provides flexible models with few assumptions, but also retains the physical meaning of degradation mechanisms (e.g., the degradation path is monotonically decreasing). Parametric models, such as the Arrhenius model, are used for modeling the relationship between the degradation and accelerating variable, allowing for extrapolation to the use conditions. We develop an efficient procedure to estimate model parameters. We also use simulation to validate the developed procedures and demonstrate the robustness of the semi-parametric model under model misspecification. Finally, the proposed method is illustrated by multiple industrial applications.
Semi-parametric survival analysis methods like the Cox Proportional Hazards (CPH) regression (Cox, 1972) are a popular approach for survival analysis. These methods involve fitting of the log-proportional hazard as a function of the covariates and ar
Accelerated degradation tests are used to provide accurate estimation of lifetime characteristics of highly reliable products within a relatively short testing time. Data from particular tests at high levels of stress (e.g., temperature, voltage, or
Accelerated degradation tests are used to provide accurate estimation of lifetime properties of highly reliable products within a relatively short testing time. There data from particular tests at high levels of stress (e.,g. temperature, voltage, or
Non-negative matrix factorization (NMF) is a technique for finding latent representations of data. The method has been applied to corpora to construct topic models. However, NMF has likelihood assumptions which are often violated by real document cor
Motivated by modeling and analysis of mass-spectrometry data, a semi- and nonparametric model is proposed that consists of a linear parametric component for individual location and scale and a nonparametric regression function for the common shape. A