ترغب بنشر مسار تعليمي؟ اضغط هنا

A Double Parametric Bootstrap Test for Topic Models

115   0   0.0 ( 0 )
 نشر من قبل Skyler Seto
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-negative matrix factorization (NMF) is a technique for finding latent representations of data. The method has been applied to corpora to construct topic models. However, NMF has likelihood assumptions which are often violated by real document corpora. We present a double parametric bootstrap test for evaluating the fit of an NMF-based topic model based on the duality of the KL divergence and Poisson maximum likelihood estimation. The test correctly identifies whether a topic model based on an NMF approach yields reliable results in simulated and real data.



قيم البحث

اقرأ أيضاً

A single, stationary topic model such as latent Dirichlet allocation is inappropriate for modeling corpora that span long time periods, as the popularity of topics is likely to change over time. A number of models that incorporate time have been prop osed, but in general they either exhibit limited forms of temporal variation, or require computationally expensive inference methods. In this paper we propose non-parametric Topics over Time (npTOT), a model for time-varying topics that allows an unbounded number of topics and exible distribution over the temporal variations in those topics popularity. We develop a collapsed Gibbs sampler for the proposed model and compare against existing models on synthetic and real document sets.
Supervised topic models can help clinical researchers find interpretable cooccurence patterns in count data that are relevant for diagnostics. However, standard formulations of supervised Latent Dirichlet Allocation have two problems. First, when doc uments have many more words than labels, the influence of the labels will be negligible. Second, due to conditional independence assumptions in the graphical model the impact of supervised labels on the learned topic-word probabilities is often minimal, leading to poor predictions on heldout data. We investigate penalized optimization methods for training sLDA that produce interpretable topic-word parameters and useful heldout predictions, using recognition networks to speed-up inference. We report preliminary results on synthetic data and on predicting successful anti-depressant medication given a patients diagnostic history.
Topic models are one of the most popular methods for learning representations of text, but a major challenge is that any change to the topic model requires mathematically deriving a new inference algorithm. A promising approach to address this proble m is autoencoding variational Bayes (AEVB), but it has proven diffi- cult to apply to topic models in practice. We present what is to our knowledge the first effective AEVB based inference method for latent Dirichlet allocation (LDA), which we call Autoencoded Variational Inference For Topic Model (AVITM). This model tackles the problems caused for AEVB by the Dirichlet prior and by component collapsing. We find that AVITM matches traditional methods in accuracy with much better inference time. Indeed, because of the inference network, we find that it is unnecessary to pay the computational cost of running variational optimization on test data. Because AVITM is black box, it is readily applied to new topic models. As a dramatic illustration of this, we present a new topic model called ProdLDA, that replaces the mixture model in LDA with a product of experts. By changing only one line of code from LDA, we find that ProdLDA yields much more interpretable topics, even if LDA is trained via collapsed Gibbs sampling.
Topic models are Bayesian models that are frequently used to capture the latent structure of certain corpora of documents or images. Each data element in such a corpus (for instance each item in a collection of scientific articles) is regarded as a c onvex combination of a small number of vectors corresponding to `topics or `components. The weights are assumed to have a Dirichlet prior distribution. The standard approach towards approximating the posterior is to use variational inference algorithms, and in particular a mean field approximation. We show that this approach suffers from an instability that can produce misleading conclusions. Namely, for certain regimes of the model parameters, variational inference outputs a non-trivial decomposition into topics. However --for the same parameter values-- the data contain no actual information about the true decomposition, and hence the output of the algorithm is uncorrelated with the true topic decomposition. Among other consequences, the estimated posterior mean is significantly wrong, and estimated Bayesian credible regions do not achieve the nominal coverage. We discuss how this instability is remedied by more accurate mean field approximations.
125 - Jan N. Fuhg 2019
The computational effort for the evaluation of numerical simulations based on e.g. the finite-element method is high. Metamodels can be utilized to create a low-cost alternative. However the number of required samples for the creation of a sufficient metamodel should be kept low, which can be achieved by using adaptive sampling techniques. In this Master thesis adaptive sampling techniques are investigated for their use in creating metamodels with the Kriging technique, which interpolates values by a Gaussian process governed by prior covariances. The Kriging framework with extension to multifidelity problems is presented and utilized to compare adaptive sampling techniques found in the literature for benchmark problems as well as applications for contact mechanics. This thesis offers the first comprehensive comparison of a large spectrum of adaptive techniques for the Kriging framework. Furthermore a multitude of adaptive techniques is introduced to multifidelity Kriging as well as well as to a Kriging model with reduced hyperparameter dimension called partial least squares Kriging. In addition, an innovative adaptive scheme for binary classification is presented and tested for identifying chaotic motion of a Duffings type oscillator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا