ﻻ يوجد ملخص باللغة العربية
Non-negative matrix factorization (NMF) is a technique for finding latent representations of data. The method has been applied to corpora to construct topic models. However, NMF has likelihood assumptions which are often violated by real document corpora. We present a double parametric bootstrap test for evaluating the fit of an NMF-based topic model based on the duality of the KL divergence and Poisson maximum likelihood estimation. The test correctly identifies whether a topic model based on an NMF approach yields reliable results in simulated and real data.
A single, stationary topic model such as latent Dirichlet allocation is inappropriate for modeling corpora that span long time periods, as the popularity of topics is likely to change over time. A number of models that incorporate time have been prop
Supervised topic models can help clinical researchers find interpretable cooccurence patterns in count data that are relevant for diagnostics. However, standard formulations of supervised Latent Dirichlet Allocation have two problems. First, when doc
Topic models are one of the most popular methods for learning representations of text, but a major challenge is that any change to the topic model requires mathematically deriving a new inference algorithm. A promising approach to address this proble
Topic models are Bayesian models that are frequently used to capture the latent structure of certain corpora of documents or images. Each data element in such a corpus (for instance each item in a collection of scientific articles) is regarded as a c
The computational effort for the evaluation of numerical simulations based on e.g. the finite-element method is high. Metamodels can be utilized to create a low-cost alternative. However the number of required samples for the creation of a sufficient