ﻻ يوجد ملخص باللغة العربية
We quantify the notion of a dense soliton gas by establishing an upper bound for the integrated density of states of the quantum-mechanical Schrodinger operator associated with the KdV soliton gas dynamics. As a by-product of our derivation we find the speed of sound in the soliton gas with Gaussian spectral distribution function.
We study numerically the properties of (statistically) homogeneous soliton gas depending on soliton density (proportional to number of solitons per unit length) and soliton velocities, in the framework of the focusing one-dimensional Nonlinear Schr{o
We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin gl
Soliton gases represent large random soliton ensembles in physical systems that display integrable dynamics at the leading order. Despite significant theoretical developments and observational evidence of ubiquity of soliton gases in fluids and optic
Dark solitons are common topological excitations in a wide array of nonlinear waves. The dark soliton excitation energy, crucial for exploring dark soliton dynamics, is necessarily calculated in a renormalized form due to its existence on a finite ba
The generation of high-intensity optical fields from harmonic-wave photons, interacting via a cross-phase modulation with dark solitons both propagating in a Kerr nonlinear medium, is examined. The focus is on a pump consisting of time-entangled dark