ﻻ يوجد ملخص باللغة العربية
Soliton gases represent large random soliton ensembles in physical systems that display integrable dynamics at the leading order. Despite significant theoretical developments and observational evidence of ubiquity of soliton gases in fluids and optical media their controlled experimental realization has been missing. We report the first controlled synthesis of a dense soliton gas in deep-water surface gravity waves using the tools of nonlinear spectral theory (inverse scattering transform (IST)) for the one-dional focusing nonlinear Schrodinger equation. The soliton gas is experimentally generated in a one-dimensional water tank where we demonstrate that we can control and measure the density of states, i. e. the probability density function parametrizing the soliton gas in the IST spectral phase space. Nonlinear spectral analysis of the generated hydrodynamic soliton gas reveals that the density of states slowly changes under the influence of perturbative higher-order effects that break the integrability of the wave dynamics.
We study experimentally, in a large-scale basin, the propagation of unidirectional deep water gravity waves stochastically modulated in phase. We observe the emergence of nonlinear localized structures that evolve on a stochastic wave background. Suc
We numerically realize breather gas for the focusing nonlinear Schrodinger equation. This is done by building a random ensemble of N $sim$ 50 breathers via the Darboux transform recursive scheme in high precision arithmetics. Three types of breather
We study numerically the properties of (statistically) homogeneous soliton gas depending on soliton density (proportional to number of solitons per unit length) and soliton velocities, in the framework of the focusing one-dimensional Nonlinear Schr{o
When a $(1+1)$-dimensional nonlinear PDE in real function $eta(x,t)$ admits localized traveling solutions we can consider $L$ to be the average width of the envelope, $A$ the average value of the amplitude of the envelope, and $V$ the group velocity
We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical waves in a nonlinear cavity. The case of the reflection geometry of wave interaction as well as a medium that possesses the cubic nonlinearity (including a l