ﻻ يوجد ملخص باللغة العربية
Dark solitons are common topological excitations in a wide array of nonlinear waves. The dark soliton excitation energy, crucial for exploring dark soliton dynamics, is necessarily calculated in a renormalized form due to its existence on a finite background. Despite its tremendous importance and success, the renormalized energy form was firstly only suggested with no detailed derivation, and was then derived in the grand canonical ensemble. In this work, we revisit this fundamental problem and provide an alternative and intuitive derivation of the energy form from the fundamental field energy by utilizing a limiting procedure that conserves number of particles. Our derivation yields the same result, putting therefore the dark soliton energy form on a solid basis.
We present a general scheme for constructing robust excitations (soliton-like) in non-integrable multicomponent systems. By robust, we mean localised excitations that propagate with almost constant velocity and which interact cleanly with little to n
We consider the interplay of repulsive short-range and long-range interactions in the dynamics of dark solitons, as prototypical coherent nonlinear excitations in a trapped quasi-1D Bose gas. Upon examining the form of the ground state, both the exis
The stability of dark solitons generated by a supersonic flow of a Bose-Einstein condensate past a concave corner (or a wedge) is studied. It is shown that solitons in the dispersive shock wave generated at the initial moment of time demonstrate a sn
We use a one-dimensional polariton fluid in a semiconductor microcavity to explore the rich nonlinear dynamics of counter-propagating interacting Bose fluids. The intrinsically driven-dissipative nature of the polariton fluid allows to use resonant p
Quasiparticle approach to dynamics of dark solitons is applied to the case of ring solitons. It is shown that the energy conservation law provides the effective equations of motion of ring dark solitons for general form of the nonlinear term in the g